フラグメント分子軌道法

巨大な分子の量子化学計算に用いられる方法.巨大な分子系を小さなフラグメントに分割し、フラグメントとフラグメントペアについて、他のフラグメントの静電ポテンシャル下で、分子軌道法と同様の計算を行うだけで、分子の全エネルギーを計算する方法である。

関連ソフトウェア

マルコフ連鎖モンテカルロ法

すべての状態に関する重み付き平均を確率的なサンプリングに置き換えることで、熱平衡状態における物理量の平均値を効率よく計算する手法。単に「モンテカルロ法」とも呼ばれることも多い。磁性体の理論模型であるイジング模型を例にとると、取りうる状態、すなわちスピン配位の総数は、スピン数に対して指数関数的に増加する。そのため、ごく小さな系を除き物理量の期待値を厳密に計算することは不可能である。マルコフ連鎖モンテカルロ法では、つりあい条件とエルゴード性の二つの条件を満たす確率過程を考え、状態をそのボルツマン重みにしたがって確率的に生成することで、物理量の熱平均を確率過程の時間平均で置き換える。代表的な例としては、メトロポリス法や熱浴法などが挙げられる。相転移点近傍やフラストレーションが強い系においては、しばしば平衡状態への緩和が問題となるが、拡張アンサンブル法や非局所更新法など緩和を速めるための様々な工夫もなされている。

関連キーワード

モンテカルロ法

擬似乱数を用いてサンプリングを行うシミュレーション手法の総称。状態空間を均等な密度でサンプルするランダムサンプリング法をはじめ、重みを考慮に入れた重点的サンプリング、マルコフ連鎖モンテカルロ法など様々な手法が考案されている。モンテカルロ法は、サンプリングだけではなく、シミュレーテッドアニーリングによる最適化問題の解法などにも利用されている。

関連ソフトウェア

もっと見る

関連キーワード

ユニバーサリティクラス

相転移点近傍で物理量が示す特異的な振る舞いは、系の詳細によらず少数のパラメータ(臨界指数)のみで特徴づけられ、その臨界指数の組み合わせがユニバーサリティクラスと呼ばれる。ユニバーサリティクラスは系が持つ対称性・空間次元のみで決定され、相互作用の大きさや格子構造などの系の詳細には依存しない。相転移現象がどのユニバーサリティクラスに属するかを決定するためには高精度な計算を行なう必要があり、厳密な計算手法であるモンテカルロ法が用いられることが多い。モンテカルロ法を行えるソフトウェアとしてはALPS,DSQSSがあり、モンテカルロ法の計算結果をもとに臨界指数を推定するソフトウェアとしてBSAがある。

関連ソフトウェア

ランチョス法

行列の全固有値・全固有ベクトルを求める全対角化は、lapackなどのパッケージが整備されているが、スーパコンピュータを使っても百万次元程度の行列の対角化が限界である。物性物理の分野では、最もエネルギーが低い基底状態近傍の固有値・固有ベクトルに興味があることが多く、そのために広く使われているのが、ランチョス(Lanczos)法である。

この方法では、初期ベクトル(多くの場合はベクトルの各成分を乱数にしたランダムベクトル)にハミルトニアンを順次かけていくことによって、最もエネルギーの低い基底状態のベクトルを抽出する方法である。原理的にはベクトルを二本保持するだけで計算が実行できることから、全対角化に比べて計算コストが低く、全対角化で取り扱うのが不可能な数億-数百億次元の行列の基底状態を求めることができる。

ランチョス法が実装されているアプリはTITPACK,KobePACK,SpinPACK,ALPS,HΦがある。HΦでは特に、近年提案された低エネルギー固有状態を求めるLOPBCG法 も実装されており、一度の計算で、多数の(基底状態を含む)低エネルギー固有状態を求めることができる。

リカーシブグリーン関数法

ポテンシャル中の電子の散乱問題を取り扱うときに有効な計算手法。電子のグリーン関数を直接計算することで、電子の透過振幅・反射振幅などを評価することができる。ランダウアー公式と組み合わせることで、ナノスケール素子の電子の輸送特性を評価することが可能である。リカーシブグリーン関数法では、空間メッシュを導入したのち、電子の伝搬方向に沿ってグリーン関数を逐次求めることで、電子の散乱状態についての高速な計算を実現している。磁性体・超伝導体などを取り扱うこともできる。代表的なアプリはKwantである。

動的平均場近似

強相関量子格子模型を解く際に、空間相関を無視するものの虚時間方向の相関(動的相関)を精度良く取り込む手法。空間相関が無視できる無限次元、またはそれと等価なベーテ格子などで厳密な計算手法となっている。この手法では、元の格子模型を中心サイト(不純物)と周辺サイト(有効媒質)とに分けて、有効媒質中の不純物問題(アンダーソン模型)に焼き直す。この不純物問題を、有効媒質のグリーン関数・自己エネルギーが元の格子模型のグリーン関数・自己エネルギーに等しいとする条件(自己無撞着方程式)のもとで解くことで、元の格子模型のグリーン関数を含む様々な物理量を求めることができる。不純物問題を解くために厳密対角化、数値繰り込み群法、量子モンテカルロ法などが用いられている。空間相関を取り込むための拡張が盛んに行われている。

半経験的電子状態計算

原子軌道間の重なり積分などの量を数値計算するのではなく、簡単な近似や実験によって得られたパラメータ値を利用することで電子状態計算を行う手法。大きな系の電子状態計算を高速で行うことができる。量子化学計算の分野では、ヒュッケル法(π軌道のみに着目し、重なり積分を無視して隣接原子間の軌道に関するクーロン積分・共鳴積分のみを考える)や拡張ヒュッケル法(π軌道のほかにσ軌道の効果も含める)などが代表的な手法であり、固体の分野では、実験値を再現するような強束縛モデルを利用することも行われる(Slater−Koster法など)。

原子局在基底・ガウシアン基底

波動関数を原子核周辺に局在した関数の線形結合で表現する手法。数値基底やガウス関数などが用いられる。原子の波動関数に似た形をしているため、平面波基底に比べてかなり小さな基底関数系でも分子や凝縮系の波動関数をよく表現できる。一般的に、原子局在基底は互いに直交しないので、多く取れば取るほど精度が良くなるというものではないが、近年では、過完備性を避けながら局在基底関数を構成する方法が多くの第一原理計算アプリケーションで実装されている。原子から離れた場所に電子が存在する場合(エレクトライドやfloating状態など)の取り扱いについては、空原子基底の配置などによって対応可能であるが、その配置方法については系ごとにユーザーが検討する必要がある。また、分子動力学計算やnudged elastic band法などによるダイナミクスの計算を行う際には、空原子基底の位置の制御が難しい場合もある。

関連ソフトウェア

もっと見る

厳密対角化

量子多体系を記述するハミルトニアンを行列表示して、その行列を対角化して固有値・固有ベクトルを求めることで量子多体系の性質を求める手法。近似を用いることがないため、有限サイズではあるものの、一番信頼のできる数値計算手法として幅広く用いられている。しかし、波動関数の次元は系のサイズに対して指数関数的に増大することから、十数サイト程度でも、行列の全固有値・全固有ベクトルを求める完全対角化は不可能となり、低励起状態のみを求めるLanczos法などの大規模行列に対する解法を使う必要がある。Lanczos法を用いた量子多体系に対する大規模行列の厳密対角化を行なう、先駆的なパッケージとしてTITPACK, KobePack, SpinPack などがある。また、ALPSでは様々な模型に対して、完全対角化を行なうことが可能である。最近では、一般的なハミルトニアンに対して、大規模並列に対応したソフトウェアHΦが開発されている。

関連ソフトウェア

もっと見る

関連キーワード