量子化学計算を行うオープンソースアプリケーション。ハートリー-フォック近似、密度汎関数理論、結合クラスター法、CI法などを用いた量子化学計算を行うことができる。プログラムはC++で書かれているが、Python用のAPIが提供されており、Python上から設定や計算の実行などを行うことができる。
ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギーを関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを任意の構造に対して評価するためのツール群を提供する。LAMMPSと組み合わせることで分子動力学計算も実行可能。
ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギー・原子間力・応力を関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを使ったLAMMPSによる分子動力学計算も実行可能。独自の予測不確かさの指標も同時に計算できる。
深層学習による原子間力ポテンシャル構築のためのPython/C++ベースのソフトウェアパッケージ。局所構造に合わせた座標系を基準にして原子環境記述子を定義するDeep Potentialを実装している。多数の第一原理計算アプリおよび分子動力学計算アプリの出力を学習データとして利用可能で、学習済みのポテンシャルはLAMMPSによる分子動力学計算およびi-PIによる経路積分分子動力学計算で利用できる。
分子動力学計算のためのソフトウェアツールを集約したパッケージ。様々な原子間ポテンシャルやタイトバインディングモデルが実装されており、多数の外部アプリの呼び出しが可能。機械学習ポテンシャルの一種であるGAP (Gaussian Approximation Potential)の訓練と評価に対応している。
E(3)-同変グラフニューラルネットワークを用いた機械学習ポテンシャルを構築し、利用するためのオープンソースソフトウェア。aseで読み込み可能な構造ーエネルギー・原子間力データを用いた学習が可能。学習済みのポテンシャルを用いてLAMMPSによる分子動力学計算を行うことができる。
E(3)-同変グラフニューラルネットワークを用いたAllegroポテンシャルモデルを構築し、分子動力学計算に利用するためのオープンソースソフトウェア。NequIPに依存しており、NequIPと同様に利用可能。メッセージパッシングを用いずに、局所的な情報のみから原子ごとのエネルギーが計算できるため、スケーリングに優れるとされる。
非線形atomicクラスター展開による原子間力ポテンシャル構築のためのツール。pandasとASEを使ったデータフォーマットを用いるが、VASPの出力ファイルから学習データを自動で抽出することもできる。学習したポテンシャルはLAMMPSに対応しており、分子動力学計算と同時に、出現した構造の学習範囲からの逸脱度合い(extrapolation grade)も計算可能。
物質科学計算に特化した結晶構造の探索と特性予測のための高効率なフレームワーク。主に密度汎関数理論に基づく計算のセットアップ、実行、結果の解析を自動化することができる。数百万以上の結晶構造のデータを提供しており、材料探索のため高スループット計算に利用可能。さまざまなDFTコード(VASP, Quantum ESPRESSOなど)とのインターフェイスも用意されている。
固体のバンド計算における波数パスを生成するツール。結晶の対称性に基づいた波数空間中の高対称点を特定し、それらを結ぶ標準化された「パス」を提供する。さまざまな結晶構造のフォーマット(POSCARやCIFなど)に対応しており、多くの電子構造計算ソフトウェア(VASP、Quantum ESPRESSO、ABINITなど)と連携可能。Webベースのインターフェースも提供されている。