An open-source application for quantum chemical calculation. This package implements various methods for quantum chemical calculation such as Hartree-Fock approximation, density functional theory, coupled-cluster method, and CI (configuration interaction) method. The package is written in C++, and provides API for Python, by which users can perform for preparation of setting and execution of calculation.
Software package that implements Behler-Parinello type neural network potential. The package provides tools for training and evaluating potentials based on given structure-energy data. It also provides an interface with LAMMPS for performing molecular dynamics calculations.
Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.
Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.
A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.
Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.
Open source software for constructing the Allegro potential model based on E(3)-equivariant graph neural networks and using the potential model for molecular dynamics simulations. The code depends on NequIP and can be run in a similar manner. Allegro scales better than NequIP since it doesn’t rely on message passing and the architecture is strictly local with respect to atom-wise environments.
Software tool for constructing interatomic potentials based on nonlinear atomic cluster expansion. It requires the user to either prepare a fitting dataset based on pandas and ASE, or it can automatically extract data from VASP calculation results. The obtained potentials can be used for molecular dynamics simulations using LAMMPS, and it also provides the capability to calculate extrapolation grades for on-the-fly active learning.
A highly efficient framework for crystal structure exploration and property prediction dedicated to material science calculations. This application can automate the setup, execution, and analysis of the results of calculations based primarily on the density functional theory. It provides data on more than millions of crystal structures and can be used for high throughput calculations for material exploration. It also interfaces with various DFT codes (VASP, Quantum ESPRESSO, etc.).
A tool for generating wavevector paths in band calculations of solids. It identifies high-symmetry points in reciprocal space based on the symmetry of the crystal and provides a standardized “path” connecting them. It supports various crystal structure formats (such as POSCAR and CIF) and is compatible with many electronic structure calculation software (e.g., VASP, Quantum ESPRESSO, ABINIT). A web-based interface is also available.