Crystallography Open Database

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 0 ☆☆☆

オープンアクセスの結晶構造データベースサイト。有機物・無機物・金属有機化合物・鉱物などの結晶構造データを入手することができる。2017年時点でおよそ40万種の物質構造データを公開している。Web上のグラフィカルユーザーインターフェイスで3次元構造を可視化することも可能。

アプリ詳細へ

FHI-aims

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

原子基底を用いた全電子計算法に基づく第一原理計算アプリケーション。広範な物理系に対して高精度の電子状態計算を行う。ハイブリッド汎関数を含む多くの汎関数セットを有し、相対論効果、多体摂動論、GW法などにも対応している。100種を超える元素を扱えるほか、デスクトップから1万CPU程度の計算機まで高い並列効率を保つ。

アプリ詳細へ

FPLO

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

局在基底・全電子計算法に基づく第一原理計算アプリケション。通常の全電子計算法(Full-potential LAPW法)に比べ、基底の数を減らしながらも精度を保つことにより、高速の電子状態計算が可能。コヒーレントポテンシャル近似(CPA)による不規則構造の計算ができ、相対論効果やLSDA+Uの取り扱いも可能。

アプリ詳細へ

Protein Data Bank (PDB)

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 0 ☆☆☆

タンパク質と核酸の構造データベース。X線結晶解析法やNMR法(核磁気共鳴法)などによって実験的に決定されたタンパク質・核酸の3次元構造(原子の立体配座)のデータをダウンロードすることができる。PDBに登録されたデータはパブリックドメインのもとで公開されており、誰でも無償でアクセスすることができる。

アプリ詳細へ

Advance/NanoLabo

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 3 ★★★

Advance/NanoLaboは、Quantum ESPRESSOやLAMMPS、Advance/PHASEなど、各種計算ソルバーをグラフィカルに操作できる統合GUIである。Materials Project他代表的な材料DBを自動検索し、モデリング・計算条件設定が極めて容易に行える。ソルバーで計算された結果は瞬時にグラフィック表示される。

アプリ詳細へ

Jaguar

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

非経験的量子化学計算を行う有償のアプリケーション。密度汎関数理論、 ハー トリー-フォック法、MP2法による量子化学計算を高速で行う。分子の構造最適化、スペクトル解析、酸解離定数などを評価でき、TDDFT法・CIS法を用いた励起状態計算も可能。同じ開発元による可視化アプリケーションMaestroとの親和性が高い。

アプリ詳細へ

DMOL3

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 3 ★★★

密度汎関数理論に基づく第一原理計算アプリケーション。Material Studioに含まれ、全電子計算法・擬ポテンシャル法などを用いて分子、クラスタ、結晶、固体界面などを含む広範囲な系の電子状態や物性を評価することができる。触媒反応や燃焼反応などの化学反応を伴う計算が可能で、大規模並列計算にも対応している。

アプリ詳細へ

Atomistix Toolkit (ATK)

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

非平衡グリーン関数法を用いた有償の電子輸送計算アプリケーション。SIESTAの流れを汲んでおり、有限バイアス下の電子状態計算を行うことで、電極間の分子やバルク系の電気伝導特性を計算する。密度汎関数法と半経験的手法のいずれかを選ぶことができ、ゲート電圧等の外部因子を設定できる。構造最適化や反応経路解析の機能も有する。

アプリ詳細へ

Molpro

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

有償の第一原理量子化学計算アプリケーション。ハートリー-フォック(HF)近似、密度汎関数法のほか、多くのpost-HF計算手法(MP法、f12法、多配置SCF法、結合クラスター法など)による分子軌道計算を行う。経路積分インスタントン法や量子モンテカルロ法、密度行列くりこみ群法なども実装している。

アプリ詳細へ

Advance/PHASE

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

Advance/PHASEは、密度汎関数理論と擬ポテンシャルを用いた平面波展開による第一原理計算ソフトウェアである。量子力学に基づき電子状態を求めるため、精度の高い計算結果を得ることができる。既存材料の分析だけでなく、金属、絶縁体、半導体、磁性体、誘電体、圧電体、他様々な新規材料の設計にも活用が期待できる。

アプリ詳細へ