系の波動関数を行列積状態(MPS)の最適化によって計算するオープンソースアプリケーション。第二世代の密度行列くりこみ群(DMRG)のアルゴリズムを用いて、多体波動関数を効率よく最適化できる。量子化学計算で現れる演算子を行列積演算子(MPO)によって表現することで、多くの対称性や相対論的効果を柔軟に記述できる。
Pythonで書かれた電子状態計算プラットフォーム。ユーザーは平均場だけでなく、GW法や結合クラスター法、配置間相互作用法などのポスト平均場を用いたシミュレーションを実行することが可能。BLOCKやLibxcなどの他のソフトウェアへのインターフェイスも提供されている。
結晶塑性を取り扱うためのマルチフィジックス統合パッケージ。各質点での変形と応力を繋ぐ構成応答が必要な連続体力学の境界値問題を、様々な構成モデルや均質化法を使った結晶塑性論に基づいて解くことができる。力学だけの取り扱いでは不十分な高強度材料にも対応できるよう、変位型相変態、著しい加熱、潜在損傷過程に関連した変形といったマルチフィジックス問題を取り扱うこともできる。追加のフィールド方程式は、モジュール方式に従い、スタッガードアプローチにより連結して解かれる。
Northwestern大学の研究グループによって作られた、第一原理計算による物質構造や熱力学的性質に関するデータベース。ICSDで提供されている実験での結晶構造だけでなく、計算で得られたものも使用することで、100万個程度のデータが格納されている。Python APIを用いてデータを検索することも可能。
量子化学計算ソフトウェアGAMESSと合わせて配布されている電子状態計算ソフトウェア。エネルギー密度解析と分割統治法(DC法)を組み合わせる事で、電子相関を含む精度の高い量子化学計算が短時間で実行できる。スーパーコンピュータを使う事で、これまで困難だった多数の原子を含むナノ構造体の超高精度計算も可能。
DV-Xα法に基づく第一原理計算アプリケーション。分子・原子から固体結晶まで、広い物理系に対して電子状態計算を行う。Xα法を採用しているため高速な全電子状態計算が可能であり、種々の物性値や電子遷移確率(特に内殻電子励起)が評価できる。パラメータ入力補助や可視化・後処理のツールも公開されている。
グリーン関数法の一種であるKKR法を用いたオープンソースの第一原理計算アプリケーション。結晶や表面などの系に対して密度汎関数法に基づく電子状態計算・バンド計算を行う。コヒーレントポテンシャル近似(CPA)によって不規則置換合金系を取り扱うことができ、スピン軌道相互作用やノンコリニア磁性の取り扱いも可能。
所望の構造,物性を持つ候補分子を探索することができるRパッケージ。SMILES(Simplified Molecular Input Line Entry Specification Syntax)による化学構造の表現を採用し、sequential Monte Carlo法に基づいて新たな分子構造を生成し、機械学習による予測モデルを通じて候補分子を探索する。
機械学習により測定データから多体波動関数を構成するオープンソースPythonライブラリ。軌道占有数や磁気スピンなどの測定量をトレーニングデータとすることで、測定量を再現するような制限ボルツマン機械で表現される最適な量子状態を見つけることができる。
.
強誘電体を対象とした高速分子動力学シミュレーター。双極子相互作用を効率よく取り扱うことで、原子変位に関する分子動力学計算を高速に行うことができる。FeRAM(強誘電体ランダムアクセスメモリ)で重要となる数十nmの微細な強誘電性薄膜の物性を、形状や不活性層の効果などを制御しながらシュミレーションを行うことが可能。