An application for data analysis of X-ray absorption fine structure (XAFS). Experimental data of XAFS can be analyzed by various analysis methods. This application supports various analysis functions (high-speed Fourier analysis, fitting in a radial coordinate or k-space, data plotting, etc.) based on IFEFFIT, and includes useful graphical user interface (GUI).
CCCM is a high-order CCM (coupled cluster method) code for lattice spin systems. It is possible to obtain the ground state and its energy of quantum spin systems in two or three dimensions.
An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.
Open-source program for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs electronic-state calculation with high accuracy based on density functional theory. In addition to basic-set programs, many core-packages and plugins are included. This package can be utilized for academic research and industrial development, and also supports parallel computing.
A Python framework for easy creation, manipulation and optimization of quantum algorithms for NISQ (Noisy Intermediate Scale Quantum Computer). A simulator for the quantum processor in the Xmon architecture provided by Google has also been supported.
A python library for pre- and post-processing of first-principles electronic structure calculations. As a pre-processing tool, it can automatically generate k-point pathways for first-principles calculations of band structures based on the crystal symmetry. It can also post-process first-principles calculation results to generate band structure and density of states plots with atomic species and orbital contributions, or visualize spin textures and Fermi surfaces. It also provides a functionality for band unfolding.
A program package for constructing interatomic force fields which explicitly consider lattice anharmonicity. In combination with a molecular dynamics simulator LAMMPS and an external first-principles package such as VASP and Quantum ESPRESSO, ALAMODE extracts harmonic/anharmonic force constants of solids and calculates phonon dispersion, phonon DOS, Gruneisen parameter, phonon-phonon scattering probability, lattice thermal-conductivity, anharmonic phonons at finite temperature, phonon free energy and so on.
An application for visualization of large-scale many-particle simulation. This application can visualize information on a large number of particles treated in calculation of gravitational many-body problems, and provides many features for creating animations. It implements high-speed visualization with OpenGL, and supports graphical user interface (GUI) for operations.
An open-source numerical library for machine learning. Using other machine learning numerical libraries (TensorFlow, CNTK, Theano, etc.), users can construct neural networks by relatively short codes. Since a number of methods in machine learning and deep learning are implemented, users can try state-of-the-art methods easily. This package is written by Python.
aenet is software for atomic interaction potentials using artificial neural networks. Users can construct neural network potentials using structures of target materials and their energies obtained from first principle calculations. The generated potentials can be used to molecular dynamics or Monte Carlo simulations.