LAMMPS

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

オープンソースの汎用古典分子動力学アプリケーション。ソフトマター、固体、メソスコピック系などの多くの系で動力学計算を行うことができる。原子の動力学計算や一般的な粒子のシミュレーターとしても利用可能で、空間分割を用いた並行計算にも対応する。GPLライセンスを採用し、コードは変更や拡張が容易となるようにデザインされている。

アプリ詳細へ

n2p2

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギーを関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを任意の構造に対して評価するためのツール群を提供する。LAMMPSと組み合わせることで分子動力学計算も実行可能。

アプリ詳細へ

SIMPLE-NN

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギー・原子間力・応力を関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを使ったLAMMPSによる分子動力学計算も実行可能。独自の予測不確かさの指標も同時に計算できる。

アプリ詳細へ

DeePMD-kit

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

深層学習による原子間力ポテンシャル構築のためのPython/C++ベースのソフトウェアパッケージ。局所構造に合わせた座標系を基準にして原子環境記述子を定義するDeep Potentialを実装している。多数の第一原理計算アプリおよび分子動力学計算アプリの出力を学習データとして利用可能で、学習済みのポテンシャルはLAMMPSによる分子動力学計算およびi-PIによる経路積分分子動力学計算で利用できる。

アプリ詳細へ

QUIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

分子動力学計算のためのソフトウェアツールを集約したパッケージ。様々な原子間ポテンシャルやタイトバインディングモデルが実装されており、多数の外部アプリの呼び出しが可能。機械学習ポテンシャルの一種であるGAP (Gaussian Approximation Potential)の訓練と評価に対応している。

アプリ詳細へ

NequIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

E(3)-同変グラフニューラルネットワークを用いた機械学習ポテンシャルを構築し、利用するためのオープンソースソフトウェア。aseで読み込み可能な構造ーエネルギー・原子間力データを用いた学習が可能。学習済みのポテンシャルを用いてLAMMPSによる分子動力学計算を行うことができる。

アプリ詳細へ

Allegro

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

E(3)-同変グラフニューラルネットワークを用いたAllegroポテンシャルモデルを構築し、分子動力学計算に利用するためのオープンソースソフトウェア。NequIPに依存しており、NequIPと同様に利用可能。メッセージパッシングを用いずに、局所的な情報のみから原子ごとのエネルギーが計算できるため、スケーリングに優れるとされる。

アプリ詳細へ

pacemaker

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

非線形atomicクラスター展開による原子間力ポテンシャル構築のためのツール。pandasとASEを使ったデータフォーマットを用いるが、VASPの出力ファイルから学習データを自動で抽出することもできる。学習したポテンシャルはLAMMPSに対応しており、分子動力学計算と同時に、出現した構造の学習範囲からの逸脱度合い(extrapolation grade)も計算可能。

アプリ詳細へ

Matbench Discovery

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

汎用機械学習ポテンシャルを評価するためのベンチマークフレームワークおよび、その評価に基づくリーダーボード。物質の生成エネルギーや、構造緩和の精度、熱伝導度の予測精度を総合的に勘案した評価をもとに順位付けを行っている。最近では大学などの公的研究機関に加えて、Meta、Microsoft、Googleなどの大企業も汎用ポテンシャルの開発に参画し、リーダーボードの上位を賑わしている。

アプリ詳細へ

MDACP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

Lennard-Jonesポテンシャルを持つ粒子用の並列分子動力学コード。C++で記述され、MPI+OpenMPを用いて空間分割により並列化されており、超高並列の環境下での実行が可能となっている。

アプリ詳細へ