LAMMPS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A general-purpose open-source application for classical molecular dynamics simulation, distributed under the GPL license. This package can perform molecular dynamics calculation of various systems such as soft matters, solids, and mesoscopic systems. It can be used as a simulator of classical dynamics of realistic atoms as well as general model particles. It supports parallel computing through spatial divisions. Its codes are designed so that their modification and extension are easy.

To Detail

n2p2

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package that implements Behler-Parinello type neural network potential. The package provides tools for training and evaluating potentials based on given structure-energy data. It also provides an interface with LAMMPS for performing molecular dynamics calculations.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

DeePMD-kit

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.

To Detail

QUIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.

To Detail

NequIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.

To Detail

Allegro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for constructing the Allegro potential model based on E(3)-equivariant graph neural networks and using the potential model for molecular dynamics simulations. The code depends on NequIP and can be run in a similar manner. Allegro scales better than NequIP since it doesn’t rely on message passing and the architecture is strictly local with respect to atom-wise environments.

To Detail

pacemaker

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software tool for constructing interatomic potentials based on nonlinear atomic cluster expansion. It requires the user to either prepare a fitting dataset based on pandas and ASE, or it can automatically extract data from VASP calculation results. The obtained potentials can be used for molecular dynamics simulations using LAMMPS, and it also provides the capability to calculate extrapolation grades for on-the-fly active learning.

To Detail

Matbench Discovery

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A benchmark framework for evaluating general-purpose, i.e., universal, machine learning potentials, along with a leaderboard based on those evaluations. Rankings are determined by a comprehensive assessment that considers the accuracy of predicted formation energy of materials, structural relaxation, and thermal conductivity. Recently, in addition to public research institutions such as universities, major companies like Meta, Microsoft, and Google have also joined the development of universal potentials, taking top positions on the leaderboard.

To Detail

cdview

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for visualization of many-particle systems. With simple operation by graphical user interface (GUI) or by command line, this application can visualize particle positions obtained from molecular dynamics simulation as well as three-dimensional scalar quantities such as potential energies. It supports various display options on kinds and shapes of particles, and can also visualize bond formation between particles.

To Detail