MLIP

  • 公開度 1 ★☆☆
  • ドキュメント充実度 2 ★★☆

モーメント・テンソルポテンシャルを実装するソフトウェアパッケージ。ポテンシャルの学習および学習済みのポテンシャルを用いたLAMMPSによる分子動力学計算が実行可能。分子動力学計算と組み合わせた能動学習も利用可能。

アプリ詳細へ

NetKet

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

機械学習やニューラルネットワークを駆使することで高精度な計算を行うことができるオープンソースの量子多体系ソルバー。変分モンテカルロ法に基づいたニューラルネットワーク状態の最適化や、厳密対角化の状態を教師データとした教師あり学習などを行うことが可能。

アプリ詳細へ

pacemaker

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

非線形atomicクラスター展開による原子間力ポテンシャル構築のためのツール。pandasとASEを使ったデータフォーマットを用いるが、VASPの出力ファイルから学習データを自動で抽出することもできる。学習したポテンシャルはLAMMPSに対応しており、分子動力学計算と同時に、出現した構造の学習範囲からの逸脱度合い(extrapolation grade)も計算可能。

アプリ詳細へ

PHYSBO (optimization tools for PHYsics based on Bayesian Optimization )

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

COMBO(COMmon Baysian Optimization)をもとに、主に物性分野の研究者をターゲットに開発された、高速でスケーラブルなベイズ最適化のためのPythonライブラリ。あらかじめリストアップした候補パラメータから目的関数値が最大と考えられる候補を機械学習による予測をうまく利用することで選定できる。scikit-learn 等のスタンダードなベイズ最適化の実装よりも、多くのデータを扱うことができる。

アプリ詳細へ

PyTorch

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

機械学習のためのオープンソース計算ライブラリTorchをPythonから使うためのインターフェース。手軽にニューラルネットワークによる深層学習を構築することができ、最新の手法を利用することができる。CUDAによるGPGPU並列計算に対応しており、高速処理が可能。C++から呼ぶためのインターフェースも用意されている。

アプリ詳細へ

QuCumber

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

機械学習により測定データから多体波動関数を構成するオープンソースPythonライブラリ。軌道占有数や磁気スピンなどの測定量をトレーニングデータとすることで、測定量を再現するような制限ボルツマン機械で表現される最適な量子状態を見つけることができる。

.

アプリ詳細へ

QUIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

分子動力学計算のためのソフトウェアツールを集約したパッケージ。様々な原子間ポテンシャルやタイトバインディングモデルが実装されており、多数の外部アプリの呼び出しが可能。機械学習ポテンシャルの一種であるGAP (Gaussian Approximation Potential)の訓練と評価に対応している。

アプリ詳細へ

RuNNer

  • 公開度 1 ★☆☆
  • ドキュメント充実度 2 ★★☆

ベーラーグループが開発しているFORTRANベースのベーラー・パリネロ型ニューラルネットワークポテンシャル関連パッケージ。ポテンシャルの構築および評価が可能で、LAMMPSを用いた分子動力学計算にも対応。最新の静電相互作用を考慮するニューラルネットワークポテンシャルが実装されている。

アプリ詳細へ

scikit-learn

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

データマイニング・データ解析のためのオープンソース計算ライブラリ。教師あり学習(データの分類・回帰)や教師なし学習(クラスタリング)、データの前処理など、機械学習の手法を手軽に扱うことができる。NumPy, SciPyなどのPythonの数値計算ライブラリを利用しており、並列計算にも対応している。

アプリ詳細へ

Strawberry Fields

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

連続変数光量子回路の設計、シミュレーション、最適化のための Pythonライブラリ。グラフやネットワークの最適化、機械学習、化学などの問題を解くための高水準関数を持ち、TensorFlowバックエンドを用いた量子プログラムの学習と最適化を実行できる。

アプリ詳細へ