2DMAT

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

順問題ソルバーに対して探索アルゴリズムを適用して最適解を探すためのフレームワーク。バージョン1.0では、順問題ソルバーとして量子ビーム回折実験の全反射高速陽電子回折実験(Total-reflection high-energy positron diffraction, TRHEPD,トレプト)、探索アルゴリズムはNelder-Mead法、グリッド型探索法、ベイズ最適化、レプリカ交換モンテカルロ法が実装されている。順問題ソルバーはユーザ自身で定義することもできる。

アプリ詳細へ

aenet (ænet, The Atomic Energy Network)

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

人工ニューラルネットワークを用いた原子間ポテンシャルに関連したソフトウェア。第一原理計算のエネルギーと物質の構造データからニューラルネットワークポテンシャルを生成できる。生成したポテンシャルはASEなどの分子動力学・モンテカルロシミュレーションに適用することもできる。

アプリ詳細へ

Caffe

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく深層学習に関する様々な機能を提供する。特に画像認識の処理を得意としており、サンプルコードが充実しているほか、学習済みモデルがCaffe Model Zooで公開されている。C++による実装のため高速で動作する。

アプリ詳細へ

Chainer

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく機械学習・深層学習に関する様々な機能を提供する。柔軟な記法により、単純なネットワークから多層ネットワークまで様々なタイプのニューラルネットを直感的にわかりやすく実装することができる。CUDAをサポートしており、GPGPU並列計算に対応している。

アプリ詳細へ

COMmon Bayesian Optimization Library (COMBO)

  • 公開度 3 ★★★
  • ドキュメント充実度 1 ★☆☆

機械学習で使われるベイズ最適化のPythonライブラリ。データ数に対して線形に計算コストが増大するので、大きな特徴空間でベイズ最適化を行うことが可能。ハイパーパラメータは第二種最尤推定に基づいてデータから自動的に学習される。

アプリ詳細へ

CrySPY

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

第一原理計算や古典MDプログラムを利用した、結晶構造探索ツール。結晶の組成を与えるだけで、結晶構造の生成から探索までを自動で行う。ver0.6.1では探索アルゴリズムとして、ランダムサーチ、ベイズ最適化およびLAQAが使用可能となっている。VASPやQuantum ESPRESSO、LAMMPSとのインターフェースを備えている。

アプリ詳細へ

EVO

  • 公開度 3 ★★★
  • ドキュメント充実度 1 ★☆☆

進化的アルゴリズムに基づく構造予測を行うアプリケーション。ユニットセル内の原子数・種類をインプットとし、安定な構造・組成を第一原理計算・分子動力学の計算と進化的アルゴリズムによって予測する。Pythonで書かれており、Quantum ESPRESSOかGULPを外部ルーチンとして使用する。

アプリ詳細へ

GASP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

遺伝的アルゴリズムに基づく構造予測を行うアプリケーション。結晶、分子、原子クラスターなどの安定な構造・組成を、第一原理計算や分子動力学を用いて予測する。VASP、LAMMPS、MOPAC、GULP、JDFTxなどの様々なコードとのインターフェイスを持ち、並列化されたアーキテクチャにおいても効率的に動作する。

アプリ詳細へ

iqspr

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

所望の構造,物性を持つ候補分子を探索することができるRパッケージ。SMILES(Simplified Molecular Input Line Entry Specification Syntax)による化学構造の表現を採用し、sequential Monte Carlo法に基づいて新たな分子構造を生成し、機械学習による予測モデルを通じて候補分子を探索する。

アプリ詳細へ

Keras

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

機械学習のためのオープンソース計算ライブラリ。他の機械学習ライブラリ(TensorFlow,CNTK,Theanoなど)の上部で動作させることができ、比較的短いコードでニューラルネットワークを構築することができる。多くの機械学習・深層学習の手法が実装されており、最先端の手法をすばやく試すことができる。Pythonで記述されている。

アプリ詳細へ