密度行列繰り込み群(DMRG)
密度行列繰り込み群法は,離散空間量子多体系の与えられたハミルトニアンに対して,その基底状態における諸物理量の期待値を求めるための手法である.変分関数として行列積状態を用いた変分法とみなすこともできる.したがって,一般に行列積状態がよい近似を与えるような場合,例えば1次元的な量子多体問題などで効果的である.この方法は行列積状態の構成要素である行列の次元を大きくすることで原理的にはいくらでも近似の精度を上げることが可能であり,行列次元の関数として計算結果がどのように変化するかが計算の信頼度を図る一つの指標になる.また,行列積状態はテンソルネットワーク状態の特殊な場合であるので,DMRGはテンソルネットワーク法の特別な場合とみなすこともできる.