変分モンテカルロ法
試行波動関数を用意して、その試行波動関数が含むパラメータを変分原理に従って最適化することで量子多体系の基底状態(または低励起エネルギー状態)の波動関数を求める手法。フェルミオン系に対する応用では,試行波動関数として一体部分(Slater行列式)に多体相関をとりこむために密度相関の演算子を指数関数の肩にのせたGutzwiller-Jastrowタイプの相関因子を付け加えた波動関数を用いるのが一般的である。試行波動関数に対する物理量の期待値計算の部分にモンテカルロ法を用いているため、変分モンテカルロ法と呼ばれている。モンテカルロ法ではあるものの負符号問題は発生しないため、様々な系に適用できる汎用性の高い手法であることから、第一原理計算[CASINO]・量子化学計算[QWalk]・格子フェルミオン系[mVMC]など幅広く用いられている計算手法である。