AFLOW (Automatic-FLOW)

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

物質科学計算に特化した結晶構造の探索と特性予測のための高効率なフレームワーク。主に密度汎関数理論に基づく計算のセットアップ、実行、結果の解析を自動化することができる。数百万以上の結晶構造のデータを提供しており、材料探索のため高スループット計算に利用可能。さまざまなDFTコード(VASP, Quantum ESPRESSOなど)とのインターフェイスも用意されている。

アプリ詳細へ

ChemDataExtractor

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

文献から化学物質の情報を自動抽出するPythonツール。英語で書かれた論文などから自然言語処理アルゴリズムに基づき、物質名とそれに関連した融点やスペクトルなどの物性情報を抽出できる。

アプリ詳細へ

PubChem

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

米国立衛生研究所(NIH)の下で2004年より運用され始めた化学物質データベース。小さな分子を主に対象としているが、脂質やペプチドなどの大きな分子のデータも収集されている。構造や物性、毒性などの化合物の性質だけでなく特許や文献情報も含んださまざまな情報を調べることが可能。WebブラウザやPUG REST APIを介したアクセスだけでなくFTPサイトからのデータのダウンロードにも対応している。

アプリ詳細へ

pacemaker

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

非線形atomicクラスター展開による原子間力ポテンシャル構築のためのツール。pandasとASEを使ったデータフォーマットを用いるが、VASPの出力ファイルから学習データを自動で抽出することもできる。学習したポテンシャルはLAMMPSに対応しており、分子動力学計算と同時に、出現した構造の学習範囲からの逸脱度合い(extrapolation grade)も計算可能。

アプリ詳細へ

Allegro

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

E(3)-同変グラフニューラルネットワークを用いたAllegroポテンシャルモデルを構築し、分子動力学計算に利用するためのオープンソースソフトウェア。NequIPに依存しており、NequIPと同様に利用可能。メッセージパッシングを用いずに、局所的な情報のみから原子ごとのエネルギーが計算できるため、スケーリングに優れるとされる。

アプリ詳細へ

NequIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

E(3)-同変グラフニューラルネットワークを用いた機械学習ポテンシャルを構築し、利用するためのオープンソースソフトウェア。aseで読み込み可能な構造ーエネルギー・原子間力データを用いた学習が可能。学習済みのポテンシャルを用いてLAMMPSによる分子動力学計算を行うことができる。

アプリ詳細へ

QUIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

分子動力学計算のためのソフトウェアツールを集約したパッケージ。様々な原子間ポテンシャルやタイトバインディングモデルが実装されており、多数の外部アプリの呼び出しが可能。機械学習ポテンシャルの一種であるGAP (Gaussian Approximation Potential)の訓練と評価に対応している。

アプリ詳細へ

DeePMD-kit

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

深層学習による原子間力ポテンシャル構築のためのPython/C++ベースのソフトウェアパッケージ。局所構造に合わせた座標系を基準にして原子環境記述子を定義するDeep Potentialを実装している。多数の第一原理計算アプリおよび分子動力学計算アプリの出力を学習データとして利用可能で、学習済みのポテンシャルはLAMMPSによる分子動力学計算およびi-PIによる経路積分分子動力学計算で利用できる。

アプリ詳細へ

Q-Chem

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

非経験的量子化学計算アプリケーション。分子構造、反応性、振動解析、電子スペクトル、NMRスペクトルを高精度に計算することができる。また、密度汎関数理論やハートリー-フォック(HF)法からポスト-HF相関法まで最先端の方法論が取り込まれている。GUIによる分子モデリング機能や、入力ファイル生成用のツールも搭載されている。

アプリ詳細へ

MLIP

  • 公開度 1 ★☆☆
  • ドキュメント充実度 2 ★★☆

モーメント・テンソルポテンシャルを実装するソフトウェアパッケージ。ポテンシャルの学習および学習済みのポテンシャルを用いたLAMMPSによる分子動力学計算が実行可能。分子動力学計算と組み合わせた能動学習も利用可能。

アプリ詳細へ