S=1スピン鎖のランチョス法による数値対角化パッケージ。TITPACKのコードを内部で使用しており、有限一次元スピン鎖の基底状態・低エネルギー励起状態の固有エネルギーと固有ベクトルを計算する。行列要素を部分空間コーディング法で記述しており、計算時間・メモリ使用量を大幅に減らしている。
テンソルネットワークを実装するためのオープンソースライブラリ。TensorFlowをベースに開発されており、物理分野だけでなく、機械学習分野の専門家が利用しやすいように配慮されている。TensorFlow以外にもJAX, PyTorch, Numpy向けのラッパーが含まれている。
peps-torch は2次元格子上の量子モデル計算のための python ライブラリである.バウンダリの無い(つまり無限系の)テンソルネットワーク状態(iPEPS)を変分波動関数とした変分法が使われているので,基底状態波動関数がiPEPS を構成する要素テンソルの形で得られる.エネルギーの評価には角転送行列法(CTM)が用いられ,pytorch を介した自動微分によってその最小化が行われる.可換な対称性を保ったままテンソルを操作するための関数/クラスが用意されている.一般の格子やモデルを標準でサポートしていないが,多くの計算実行例がついているので,直接サポートされていない格子やモデルについては,実行例を参考にユーザが比較的容易にソースコードを改変できるようになっている.pytorch がインストールされていることが必要である.
ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギーを関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを任意の構造に対して評価するためのツール群を提供する。LAMMPSと組み合わせることで分子動力学計算も実行可能。
ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギー・原子間力・応力を関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを使ったLAMMPSによる分子動力学計算も実行可能。独自の予測不確かさの指標も同時に計算できる。
深層学習による原子間力ポテンシャル構築のためのPython/C++ベースのソフトウェアパッケージ。局所構造に合わせた座標系を基準にして原子環境記述子を定義するDeep Potentialを実装している。多数の第一原理計算アプリおよび分子動力学計算アプリの出力を学習データとして利用可能で、学習済みのポテンシャルはLAMMPSによる分子動力学計算およびi-PIによる経路積分分子動力学計算で利用できる。
分子動力学計算のためのソフトウェアツールを集約したパッケージ。様々な原子間ポテンシャルやタイトバインディングモデルが実装されており、多数の外部アプリの呼び出しが可能。機械学習ポテンシャルの一種であるGAP (Gaussian Approximation Potential)の訓練と評価に対応している。
E(3)-同変グラフニューラルネットワークを用いた機械学習ポテンシャルを構築し、利用するためのオープンソースソフトウェア。aseで読み込み可能な構造ーエネルギー・原子間力データを用いた学習が可能。学習済みのポテンシャルを用いてLAMMPSによる分子動力学計算を行うことができる。
E(3)-同変グラフニューラルネットワークを用いたAllegroポテンシャルモデルを構築し、分子動力学計算に利用するためのオープンソースソフトウェア。NequIPに依存しており、NequIPと同様に利用可能。メッセージパッシングを用いずに、局所的な情報のみから原子ごとのエネルギーが計算できるため、スケーリングに優れるとされる。
非線形atomicクラスター展開による原子間力ポテンシャル構築のためのツール。pandasとASEを使ったデータフォーマットを用いるが、VASPの出力ファイルから学習データを自動で抽出することもできる。学習したポテンシャルはLAMMPSに対応しており、分子動力学計算と同時に、出現した構造の学習範囲からの逸脱度合い(extrapolation grade)も計算可能。