機械学習のためのフリーのライブラリ。多層ニューラルネットワークに基づく機械学習(教師あり学習・教師なし学習)について様々な機能を提供する。データフローグラフを使用しており、複雑なネットワークを分かりやすく記述できる。GPGPU並列計算に対応しており、効率のより大規模データ処理が可能。
機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく機械学習・深層学習に関する様々な機能を提供する。柔軟な記法により、単純なネットワークから多層ネットワークまで様々なタイプのニューラルネットを直感的にわかりやすく実装することができる。CUDAをサポートしており、GPGPU並列計算に対応している。
機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく深層学習に関する様々な機能を提供する。特に画像認識の処理を得意としており、サンプルコードが充実しているほか、学習済みモデルがCaffe Model Zooで公開されている。C++による実装のため高速で動作する。
物質データマイニングのためのオープンソースPythonパッケージ。数十を超えるデータベースからデータを抽出し、前処理や可視化をすることができる。scikit-learnなどと組み合わせることにより、抽出したデータを元に作成した記述子で機械学習モデルを構築できる。
データマイニング・データ解析のためのオープンソース計算ライブラリ。教師あり学習(データの分類・回帰)や教師なし学習(クラスタリング)、データの前処理など、機械学習の手法を手軽に扱うことができる。NumPy, SciPyなどのPythonの数値計算ライブラリを利用しており、並列計算にも対応している。
機械学習のためのオープンソース計算ライブラリ。機械学習に関する様々な機能を実装している。ユーザは数式そのものを直接記述でき、行列演算や自動偏微分などの便利な機能を有する。実行時にCコードを生成してコンパイルすることができ、GPGPU並列計算にも対応してため、高速な計算が可能。チュートリアルも充実している。
機械学習のためのオープンソース計算ライブラリ。ニューラルネットワークによる深層学習について、様々な機能を実装している。柔軟な記述により複雑なニューラルネットワークを実装することができ、最新の手法が多数実装されている。世界的に多くの企業で利用されている。スクリプト言語luaによって書かれている。
機械学習のためのオープンソース計算ライブラリTorchをPythonから使うためのインターフェース。手軽にニューラルネットワークによる深層学習を構築することができ、最新の手法を利用することができる。CUDAによるGPGPU並列計算に対応しており、高速処理が可能。C++から呼ぶためのインターフェースも用意されている。
機械学習のためのオープンソース計算ライブラリ。他の機械学習ライブラリ(TensorFlow,CNTK,Theanoなど)の上部で動作させることができ、比較的短いコードでニューラルネットワークを構築することができる。多くの機械学習・深層学習の手法が実装されており、最先端の手法をすばやく試すことができる。Pythonで記述されている。
機械学習やニューラルネットワークを駆使することで高精度な計算を行うことができるオープンソースの量子多体系ソルバー。変分モンテカルロ法に基づいたニューラルネットワーク状態の最適化や、厳密対角化の状態を教師データとした教師あり学習などを行うことが可能。