MLIP

  • 公開度 1 ★☆☆
  • ドキュメント充実度 2 ★★☆

モーメント・テンソルポテンシャルを実装するソフトウェアパッケージ。ポテンシャルの学習および学習済みのポテンシャルを用いたLAMMPSによる分子動力学計算が実行可能。分子動力学計算と組み合わせた能動学習も利用可能。

アプリ詳細へ

RuNNer

  • 公開度 1 ★☆☆
  • ドキュメント充実度 2 ★★☆

ベーラーグループが開発しているFORTRANベースのベーラー・パリネロ型ニューラルネットワークポテンシャル関連パッケージ。ポテンシャルの構築および評価が可能で、LAMMPSを用いた分子動力学計算にも対応。最新の静電相互作用を考慮するニューラルネットワークポテンシャルが実装されている。

アプリ詳細へ

n2p2

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギーを関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを任意の構造に対して評価するためのツール群を提供する。LAMMPSと組み合わせることで分子動力学計算も実行可能。

アプリ詳細へ

Strawberry Fields

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

連続変数光量子回路の設計、シミュレーション、最適化のための Pythonライブラリ。グラフやネットワークの最適化、機械学習、化学などの問題を解くための高水準関数を持ち、TensorFlowバックエンドを用いた量子プログラムの学習と最適化を実行できる。

アプリ詳細へ

2DMAT

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

順問題ソルバーに対して探索アルゴリズムを適用して最適解を探すためのフレームワーク。バージョン1.0では、順問題ソルバーとして量子ビーム回折実験の全反射高速陽電子回折実験(Total-reflection high-energy positron diffraction, TRHEPD,トレプト)、探索アルゴリズムはNelder-Mead法、グリッド型探索法、ベイズ最適化、レプリカ交換モンテカルロ法が実装されている。順問題ソルバーはユーザ自身で定義することもできる。

アプリ詳細へ

PHYSBO (optimization tools for PHYsics based on Bayesian Optimization )

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

COMBO(COMmon Baysian Optimization)をもとに、主に物性分野の研究者をターゲットに開発された、高速でスケーラブルなベイズ最適化のためのPythonライブラリ。あらかじめリストアップした候補パラメータから目的関数値が最大と考えられる候補を機械学習による予測をうまく利用することで選定できる。scikit-learn 等のスタンダードなベイズ最適化の実装よりも、多くのデータを扱うことができる。

アプリ詳細へ

NetKet

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

機械学習やニューラルネットワークを駆使することで高精度な計算を行うことができるオープンソースの量子多体系ソルバー。変分モンテカルロ法に基づいたニューラルネットワーク状態の最適化や、厳密対角化の状態を教師データとした教師あり学習などを行うことが可能。

アプリ詳細へ

QuCumber

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

機械学習により測定データから多体波動関数を構成するオープンソースPythonライブラリ。軌道占有数や磁気スピンなどの測定量をトレーニングデータとすることで、測定量を再現するような制限ボルツマン機械で表現される最適な量子状態を見つけることができる。

.

アプリ詳細へ

iqspr

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

所望の構造,物性を持つ候補分子を探索することができるRパッケージ。SMILES(Simplified Molecular Input Line Entry Specification Syntax)による化学構造の表現を採用し、sequential Monte Carlo法に基づいて新たな分子構造を生成し、機械学習による予測モデルを通じて候補分子を探索する。

アプリ詳細へ

XenonPy

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

機械学習を用いて物質探索を行うためのPythonツール。matminerで対応している記述子を使用できるが、化合物の化学組成と構造情報から記述子を算出することもできる。モデル訓練はPyTorchによって行われている。記述子の可視化ツールと転移学習フレームワークも備えており、様々な化合物物性値の予測に利用できる。

アプリ詳細へ