人工ニューラルネットワークを用いた原子間ポテンシャルに関連したソフトウェア。第一原理計算のエネルギーと物質の構造データからニューラルネットワークポテンシャルを生成できる。生成したポテンシャルはASEなどの分子動力学・モンテカルロシミュレーションに適用することもできる。
E(3)-同変グラフニューラルネットワークを用いたAllegroポテンシャルモデルを構築し、分子動力学計算に利用するためのオープンソースソフトウェア。NequIPに依存しており、NequIPと同様に利用可能。メッセージパッシングを用いずに、局所的な情報のみから原子ごとのエネルギーが計算できるため、スケーリングに優れるとされる。
機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく深層学習に関する様々な機能を提供する。特に画像認識の処理を得意としており、サンプルコードが充実しているほか、学習済みモデルがCaffe Model Zooで公開されている。C++による実装のため高速で動作する。
機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく機械学習・深層学習に関する様々な機能を提供する。柔軟な記法により、単純なネットワークから多層ネットワークまで様々なタイプのニューラルネットを直感的にわかりやすく実装することができる。CUDAをサポートしており、GPGPU並列計算に対応している。
深層学習による原子間力ポテンシャル構築のためのPython/C++ベースのソフトウェアパッケージ。局所構造に合わせた座標系を基準にして原子環境記述子を定義するDeep Potentialを実装している。多数の第一原理計算アプリおよび分子動力学計算アプリの出力を学習データとして利用可能で、学習済みのポテンシャルはLAMMPSによる分子動力学計算およびi-PIによる経路積分分子動力学計算で利用できる。
機械学習のためのオープンソース計算ライブラリ。他の機械学習ライブラリ(TensorFlow,CNTK,Theanoなど)の上部で動作させることができ、比較的短いコードでニューラルネットワークを構築することができる。多くの機械学習・深層学習の手法が実装されており、最先端の手法をすばやく試すことができる。Pythonで記述されている。
モーメント・テンソルポテンシャルを実装するソフトウェアパッケージ。ポテンシャルの学習および学習済みのポテンシャルを用いたLAMMPSによる分子動力学計算が実行可能。分子動力学計算と組み合わせた能動学習も利用可能。
E(3)-同変グラフニューラルネットワークを用いた機械学習ポテンシャルを構築し、利用するためのオープンソースソフトウェア。aseで読み込み可能な構造ーエネルギー・原子間力データを用いた学習が可能。学習済みのポテンシャルを用いてLAMMPSによる分子動力学計算を行うことができる。
機械学習やニューラルネットワークを駆使することで高精度な計算を行うことができるオープンソースの量子多体系ソルバー。変分モンテカルロ法に基づいたニューラルネットワーク状態の最適化や、厳密対角化の状態を教師データとした教師あり学習などを行うことが可能。
非線形atomicクラスター展開による原子間力ポテンシャル構築のためのツール。pandasとASEを使ったデータフォーマットを用いるが、VASPの出力ファイルから学習データを自動で抽出することもできる。学習したポテンシャルはLAMMPSに対応しており、分子動力学計算と同時に、出現した構造の学習範囲からの逸脱度合い(extrapolation grade)も計算可能。