フェーズフィールド法

フェーズフィールドと呼ばれる場の変数を用いて、不均一場における連続体模型を取り扱う手法。場の変数として密度場や温度場などのほかに、相の状態を記述する連続場(秩序変数)も導入することで、相転移現象を伴う多くの物理現象(凝固現象や相変態など)や組織形成過程の現象論的なシミュレーションに応用されている。連続場はギンツブルク-ランダウ方程式を基礎としており、モデル中のパラメータは相の自由エネルギーで決められているため、CALPHAD(Calculation Phase Diagram)法など他の手法で得られた自由エネルギー関数をそのまま利用できる。このようにして得られた時間発展方程式を解くことにより、秩序変数のダイナミクスが得られる。すべての物理量が連続場で書かれているため計算コードが書きやすく、公開もしくは市販されているプログラムを利用することができる。

関連ソフトウェア