2DMAT

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

順問題ソルバーに対して探索アルゴリズムを適用して最適解を探すためのフレームワーク。バージョン1.0では、順問題ソルバーとして量子ビーム回折実験の全反射高速陽電子回折実験(Total-reflection high-energy positron diffraction, TRHEPD,トレプト)、探索アルゴリズムはNelder-Mead法、グリッド型探索法、ベイズ最適化、レプリカ交換モンテカルロ法が実装されている。順問題ソルバーはユーザ自身で定義することもできる。

アプリ詳細へ

BEEMs

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

有効模型をベイズ最適化を用いて有効模型を導出するツール(BEEMs =Bayesian optimization tool of Effective Models )。
与えられたハミルトニアンから磁化曲線を求める順問題ソルバーとして、量子格子模型ソルバーHΦが使われている。ターゲットの磁化曲線と計算で得られた磁化曲線の差がコスト関数として用いられ、ベイズ最適化ライブラリPHYSBOによって、コスト関数を最小にするよう次の候補ハミルトニアンが提案される。

アプリ詳細へ

Chainer

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく機械学習・深層学習に関する様々な機能を提供する。柔軟な記法により、単純なネットワークから多層ネットワークまで様々なタイプのニューラルネットを直感的にわかりやすく実装することができる。CUDAをサポートしており、GPGPU並列計算に対応している。

アプリ詳細へ

Strawberry Fields

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

連続変数光量子回路の設計、シミュレーション、最適化のための Pythonライブラリ。グラフやネットワークの最適化、機械学習、化学などの問題を解くための高水準関数を持ち、TensorFlowバックエンドを用いた量子プログラムの学習と最適化を実行できる。

アプリ詳細へ

PubChemPy

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

化学物質データベースPubChemをPUG REST API経由で取り扱えるPythonラッパー。PubChemにあるデータを化合物名や構造情報から検索することができる。Pandas dataframeとして出力を受け取ることも可能。

アプリ詳細へ

Caffe

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく深層学習に関する様々な機能を提供する。特に画像認識の処理を得意としており、サンプルコードが充実しているほか、学習済みモデルがCaffe Model Zooで公開されている。C++による実装のため高速で動作する。

アプリ詳細へ

n2p2

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギーを関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを任意の構造に対して評価するためのツール群を提供する。LAMMPSと組み合わせることで分子動力学計算も実行可能。

アプリ詳細へ

EVO

  • 公開度 3 ★★★
  • ドキュメント充実度 1 ★☆☆

進化的アルゴリズムに基づく構造予測を行うアプリケーション。ユニットセル内の原子数・種類をインプットとし、安定な構造・組成を第一原理計算・分子動力学の計算と進化的アルゴリズムによって予測する。Pythonで書かれており、Quantum ESPRESSOかGULPを外部ルーチンとして使用する。

アプリ詳細へ

scikit-learn

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

データマイニング・データ解析のためのオープンソース計算ライブラリ。教師あり学習(データの分類・回帰)や教師なし学習(クラスタリング)、データの前処理など、機械学習の手法を手軽に扱うことができる。NumPy, SciPyなどのPythonの数値計算ライブラリを利用しており、並列計算にも対応している。

アプリ詳細へ

GASP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

遺伝的アルゴリズムに基づく構造予測を行うアプリケーション。結晶、分子、原子クラスターなどの安定な構造・組成を、第一原理計算や分子動力学を用いて予測する。VASP、LAMMPS、MOPAC、GULP、JDFTxなどの様々なコードとのインターフェイスを持ち、並列化されたアーキテクチャにおいても効率的に動作する。

アプリ詳細へ