RuNNer

  • 公開度 1 ★☆☆
  • ドキュメント充実度 2 ★★☆

ベーラーグループが開発しているFORTRANベースのベーラー・パリネロ型ニューラルネットワークポテンシャル関連パッケージ。ポテンシャルの構築および評価が可能で、LAMMPSを用いた分子動力学計算にも対応。最新の静電相互作用を考慮するニューラルネットワークポテンシャルが実装されている。

アプリ詳細へ

MLIP

  • 公開度 1 ★☆☆
  • ドキュメント充実度 2 ★★☆

モーメント・テンソルポテンシャルを実装するソフトウェアパッケージ。ポテンシャルの学習および学習済みのポテンシャルを用いたLAMMPSによる分子動力学計算が実行可能。分子動力学計算と組み合わせた能動学習も利用可能。

アプリ詳細へ

TensorFlow

  • 公開度 2 ★★☆
  • ドキュメント充実度 3 ★★★

機械学習のためのフリーのライブラリ。多層ニューラルネットワークに基づく機械学習(教師あり学習・教師なし学習)について様々な機能を提供する。データフローグラフを使用しており、複雑なネットワークを分かりやすく記述できる。GPGPU並列計算に対応しており、効率のより大規模データ処理が可能。

アプリ詳細へ

NequIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

E(3)-同変グラフニューラルネットワークを用いた機械学習ポテンシャルを構築し、利用するためのオープンソースソフトウェア。aseで読み込み可能な構造ーエネルギー・原子間力データを用いた学習が可能。学習済みのポテンシャルを用いてLAMMPSによる分子動力学計算を行うことができる。

アプリ詳細へ

2DMAT

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

順問題ソルバーに対して探索アルゴリズムを適用して最適解を探すためのフレームワーク。バージョン1.0では、順問題ソルバーとして量子ビーム回折実験の全反射高速陽電子回折実験(Total-reflection high-energy positron diffraction, TRHEPD,トレプト)、探索アルゴリズムはNelder-Mead法、グリッド型探索法、ベイズ最適化、レプリカ交換モンテカルロ法が実装されている。順問題ソルバーはユーザ自身で定義することもできる。

アプリ詳細へ

Strawberry Fields

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

連続変数光量子回路の設計、シミュレーション、最適化のための Pythonライブラリ。グラフやネットワークの最適化、機械学習、化学などの問題を解くための高水準関数を持ち、TensorFlowバックエンドを用いた量子プログラムの学習と最適化を実行できる。

アプリ詳細へ

n2p2

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギーを関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを任意の構造に対して評価するためのツール群を提供する。LAMMPSと組み合わせることで分子動力学計算も実行可能。

アプリ詳細へ

SIMPLE-NN

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

ベーラー・パリネロ型ニューラルネットワークポテンシャルを実装するソフトウェアパッケージ。構造とエネルギー・原子間力・応力を関連付けるデータからポテンシャルを学習したり、学習済みのポテンシャルを使ったLAMMPSによる分子動力学計算も実行可能。独自の予測不確かさの指標も同時に計算できる。

アプリ詳細へ

DeePMD-kit

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

深層学習による原子間力ポテンシャル構築のためのPython/C++ベースのソフトウェアパッケージ。局所構造に合わせた座標系を基準にして原子環境記述子を定義するDeep Potentialを実装している。多数の第一原理計算アプリおよび分子動力学計算アプリの出力を学習データとして利用可能で、学習済みのポテンシャルはLAMMPSによる分子動力学計算およびi-PIによる経路積分分子動力学計算で利用できる。

アプリ詳細へ

QUIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

分子動力学計算のためのソフトウェアツールを集約したパッケージ。様々な原子間ポテンシャルやタイトバインディングモデルが実装されており、多数の外部アプリの呼び出しが可能。機械学習ポテンシャルの一種であるGAP (Gaussian Approximation Potential)の訓練と評価に対応している。

アプリ詳細へ