2DMAT

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

順問題ソルバーに対して探索アルゴリズムを適用して最適解を探すためのフレームワーク。バージョン1.0では、順問題ソルバーとして量子ビーム回折実験の全反射高速陽電子回折実験(Total-reflection high-energy positron diffraction, TRHEPD,トレプト)、探索アルゴリズムはNelder-Mead法、グリッド型探索法、ベイズ最適化、レプリカ交換モンテカルロ法が実装されている。順問題ソルバーはユーザ自身で定義することもできる。

アプリ詳細へ

aenet (ænet, The Atomic Energy Network)

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

人工ニューラルネットワークを用いた原子間ポテンシャルに関連したソフトウェア。第一原理計算のエネルギーと物質の構造データからニューラルネットワークポテンシャルを生成できる。生成したポテンシャルはASEなどの分子動力学・モンテカルロシミュレーションに適用することもできる。

アプリ詳細へ

Allegro

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

E(3)-同変グラフニューラルネットワークを用いたAllegroポテンシャルモデルを構築し、分子動力学計算に利用するためのオープンソースソフトウェア。NequIPに依存しており、NequIPと同様に利用可能。メッセージパッシングを用いずに、局所的な情報のみから原子ごとのエネルギーが計算できるため、スケーリングに優れるとされる。

アプリ詳細へ

BEEMs

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

有効模型をベイズ最適化を用いて有効模型を導出するツール(BEEMs =Bayesian optimization tool of Effective Models )。
与えられたハミルトニアンから磁化曲線を求める順問題ソルバーとして、量子格子模型ソルバーHΦが使われている。ターゲットの磁化曲線と計算で得られた磁化曲線の差がコスト関数として用いられ、ベイズ最適化ライブラリPHYSBOによって、コスト関数を最小にするよう次の候補ハミルトニアンが提案される。

アプリ詳細へ

Caffe

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく深層学習に関する様々な機能を提供する。特に画像認識の処理を得意としており、サンプルコードが充実しているほか、学習済みモデルがCaffe Model Zooで公開されている。C++による実装のため高速で動作する。

アプリ詳細へ

Chainer

  • 公開度 3 ★★★
  • ドキュメント充実度 3 ★★★

機械学習のためのオープンソースライブラリ。ニューラルネットワークに基づく機械学習・深層学習に関する様々な機能を提供する。柔軟な記法により、単純なネットワークから多層ネットワークまで様々なタイプのニューラルネットを直感的にわかりやすく実装することができる。CUDAをサポートしており、GPGPU並列計算に対応している。

アプリ詳細へ

COMmon Bayesian Optimization Library (COMBO)

  • 公開度 3 ★★★
  • ドキュメント充実度 1 ★☆☆

機械学習で使われるベイズ最適化のPythonライブラリ。データ数に対して線形に計算コストが増大するので、大きな特徴空間でベイズ最適化を行うことが可能。ハイパーパラメータは第二種最尤推定に基づいてデータから自動的に学習される。

アプリ詳細へ

CrySPY

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

第一原理計算や古典MDプログラムを利用した、結晶構造探索ツール。結晶の組成を与えるだけで、結晶構造の生成から探索までを自動で行う。ver0.6.1では探索アルゴリズムとして、ランダムサーチ、ベイズ最適化およびLAQAが使用可能となっている。VASPやQuantum ESPRESSO、LAMMPSとのインターフェースを備えている。

アプリ詳細へ

DeePMD-kit

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

深層学習による原子間力ポテンシャル構築のためのPython/C++ベースのソフトウェアパッケージ。局所構造に合わせた座標系を基準にして原子環境記述子を定義するDeep Potentialを実装している。多数の第一原理計算アプリおよび分子動力学計算アプリの出力を学習データとして利用可能で、学習済みのポテンシャルはLAMMPSによる分子動力学計算およびi-PIによる経路積分分子動力学計算で利用できる。

アプリ詳細へ

EVO

  • 公開度 3 ★★★
  • ドキュメント充実度 1 ★☆☆

進化的アルゴリズムに基づく構造予測を行うアプリケーション。ユニットセル内の原子数・種類をインプットとし、安定な構造・組成を第一原理計算・分子動力学の計算と進化的アルゴリズムによって予測する。Pythonで書かれており、Quantum ESPRESSOかGULPを外部ルーチンとして使用する。

アプリ詳細へ