H-wave

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

H-wave is a Python package for performing unrestricted Hartree-Fock (UHF) calculations and random phase approximation (RPA) calculations for itinerant electron systems. H-wave supports UHF calculations both in real- and wavenumber-spaces. H-wave supports one-body and two-body interactions in the Wannier90 format as inputs for H-wave, and thus users can solve ab initio effective Hamiltonians derived from  Wannier90/RESPACK calculations based on UHF and RPA methods.

To Detail

Open Source MPS

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An open-source application for simulation of one-dimensional interacting electron models based on a tensor product wavefunction method. This application supports not only electronic models but also spin and bosonic models, and can evaluate various physical quantities for ground states and low-lying excited states. This application also supports time evolution, and can treat models with long-range interactions.

To Detail

JDFTx

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for first-principles calculation by the joint-DFT method based on a plane-wave basis. By implementation of the joint-DFT method, this application realizes a good convergence for electronic state calculation of molecules in liquid, particular for charged systems. This application is written by C++11, and supports GPU calculation by CUDA. This application also supports diffusive Monte Carlo simulation in cooperation with CASINO.

To Detail

TRIQS/DFT tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An interface tool for combining first-principles calculation based on density functional theory (DFT) and TRIQS, the application for dynamical mean-field theory (DMFT). By combining Wien2k and TRIQS, self-consistent DFT+DMFT calculation can be realized by this tool. One-shot DFT+DMFT calculation using band structures obtained by other first-principles applications is also possible.

To Detail

TB2J

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python package for automatic calculation of magnetic effective interactions between atoms (exchange and Dzyaloshinskii-Moriya interactions) from ab initio Hamiltonians based on Wannier functions and LCAO calculations. The package can postprocess Hamiltonians calculated using Wannier90, Siesta, and OpenMX. Input files for magnetic structure simulators such as Vampire can also be generated.

To Detail

RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail

QS3

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An exact diagonalization package for efficiently solving quantum spin 1/2 lattice models in almost fully spin-polarized sectors. QS3 can treat such systems with quite large system sizes, over 1000 sites. It supports calculations of wavenumber-dependence of energy-dispersion and dynamical spin structure factor.

To Detail

ALPSCore/CT-HYB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source impurity solver based on the quantum Monte Carlo method. Thermal equilibrium states of interacting impurity systems, such as the impurity Anderson model, can be evaluated by the continuous-time hybridization-expansion quantum Monte Carlo method. It can be used as a solver of effective impurity models derived from the dynamical mean-field theory (DMFT) and can deal with multi-orbital models. This package supports parallel computation by MPI and is developed based on the ALPSCore library.

To Detail

TeNeS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A solver program for two dimensional quantum lattice model based on a projected entangled pair state wavefunction and the corner transfer matrix renormalization group method.
This works on a massively parallel machine because tensor operations are OpenMP/MPI parallelized.

To Detail

AMULET

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

AMULET is a collection of tools for a first principles calculation of physical properties of strongly correlated materials. It is based on density functional theory (DFT) combined with dynamical mean-field theory (DMFT). Users can calculate physical properties of chemically disordered compounds and alloys within CPA+DMFT formalism.

To Detail