Calypso

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for prediction of stable and metastable structures from a chemical composition. This application applies particle swarm optimization to predict material structures from results of the first-principles calculation by external packages (VASP, CASTEP, Quantum Espresso, GULP, SIESTA, CP2k). It has been applied to predict not only three-dimensional crystal structures, but also those of clusters and surfaces.

To Detail

QS3

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An exact diagonalization package for efficiently solving quantum spin 1/2 lattice models in almost fully spin-polarized sectors. QS3 can treat such systems with quite large system sizes, over 1000 sites. It supports calculations of wavenumber-dependence of energy-dispersion and dynamical spin structure factor.

To Detail

Siesta

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and atom-localized basis sets. This application is capable of performing electronic structure calculations, structural relaxation, and molecular dynamics in a wide range of systems based on density functional theory. By adopting atom-localized basis sets, it realizes high-speed electronic calculation and linear-scaling in suitable computer systems. It can also perform electronic conductance calculations based on non-equilibrium Green’s function method.

To Detail

DMRG++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for simulation based on the density-matrix renormalization group (DMRG). This application can perform high-speed calculation of low-dimensional quantum systems with high accuracy. It implements generic programming techniques in the C++ language, and can easily extend simulation to new models and geometries. It is developed putting emphasis on user-friendly interfaces and low dependences on environments.

To Detail

Flexible DM-NRG

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for numerical renormalization group calculations. This application can solve magnetic impurity problems described by the Kondo model and the Anderson model. Input files are prepared for typical impulity models. By modifying input files, one can study more general models of the magnetic impurity problems. A mathematica program for generation of input files are also included.

To Detail

Open Source MPS

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An open-source application for simulation of one-dimensional interacting electron models based on a tensor product wavefunction method. This application supports not only electronic models but also spin and bosonic models, and can evaluate various physical quantities for ground states and low-lying excited states. This application also supports time evolution, and can treat models with long-range interactions.

To Detail

TB2J

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python package for automatic calculation of magnetic effective interactions between atoms (exchange and Dzyaloshinskii-Moriya interactions) from ab initio Hamiltonians based on Wannier functions and LCAO calculations. The package can postprocess Hamiltonians calculated using Wannier90, Siesta, and OpenMX. Input files for magnetic structure simulators such as Vampire can also be generated.

To Detail

FullProf

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines lattice constants and atomic coordinates from X-ray and neutron diffraction data on powder samples. It supports Windows and Linux. For Windows version, graphical user interface (GUI) named WinPLOTR can be used.

To Detail

BSA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Fitting data to a scaling law of critical phenomena, we automatically estimate critical point and indices. Since Bayesian method is flexible, we can use all data in a critical region.

To Detail

RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail