An electronic structure calculation program based on the density functional theory and the pseudo potential scheme with a plane wave basis set. This is a powerful tool to predict the physical properties of unknown materials and to simulate experimental results such as STM and EELS. This also enables users to perform long time molecular dynamics simulations and to analyze chemical reaction processes. This program is available on a wide variety of computers from single-core PCs to massive parallel computers like K computer. The whole source code is open to public.
An application for first-principles calculation based on density functional theory (DFT) optimized for X-ray spectroscopy analysis. Theoretical prediction and data fitting for X-ray spectroscopy such as XANES(X-ray absorption fine structure), XMCD(X-ray magnetic circular dichroism), RXD(resonant X-ray diffraction) can be preformes. This application employs a fully relativistic LSDA calculation based on the finite element method, and also supports the LDA+U method and the TD-DFT calculation.
Program package for first-principles calculation based on all-electron calculation method and augmented plane-wave basis. This package performs electronic-state calculation such as band calculation of solids, structure optimization, first-principles molecular dynamics, and so on. All-electron method, which treats core electrons, improves accuracy in calculation compared with pseudo-potential method, and enables us to obtain chemical shifts related to core electrons. This payware can be used by making a contract with the developer.
An open-source application for molecular simulations. This application supports various methods such as classical and ab initio molecular dynamics, path integral simulations, replica exchange simulations, metadynamics, string method, surface hopping dynamics, QM/MM simulations, and so on. A hierarchical parallelization between molecular structures (replicas) and force fields (adiabatic potentials) enables fast and efficient computation.
An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.
An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.
OpenMX is a first-principles software based on the pseudo-atomic localized basis functions. It calculates electronic structure rapidly for a wide range of materials including crystals, interfaces, liquids, etc. It speedily provides molecular dynamics simulation and structural optimization of large-scale systems and also implements a hybrid parallelism. It is able to deal with non-collinear magnetism and non-equilibrium Green’s function calculations for electrical conductions.
A tool for performing Bader analysis of assigning electron density of molecules and solids to individual atoms. Binaries for Linux and Mac OS X, as well as source code is provided under the GPL. The code is written in fortran90, and can handle charge density data in VASP CHGCAR and Gaussian Cube formats.
A open-source application of first-principles calculation for the electronic structure, using the KKR method, a variant of Green’s function method. It is based on the density functional theory and is applicable to crystals and surfaces. The coherent potential approximation (CPA) is adopted, so it can handle not only periodic systems, but also disordered alloys. It can also handle spin-orbit interaction and non-collinear magnetism.
An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.