GSAS-II

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for the single-crystal analysis and the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines crystal structure models of materials from X-ray and neutron diffraction data on single-crystal and powder samples. It has been developed based on Python. Graphical user interface (GUI) can be used.

To Detail

LmtART

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for all-electron first-principles calculation based on augmented plane-wave basis. It performs electronic-state calculation such as band calculation of solids and structure optimization. The all-electron method, which treats core electrons explicitly, improves accuracy compared with pseudo-potential methods. This package can also treat strong electronic correlations by combining electronic-state calculation with the dynamical mean-field approximation.

To Detail

GULP

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

An application program for lattice dynamics calculation of molecules, surfaces, and solids in various boundary conditions. It lays emphasis on analytic calculation of lattice dynamics while it can perform molecular dynamics simulation as well. It supports various force fields to treat ionic materials, organic materials, and metals. It also implements analytic derivatives of the second and third order for many force fields.

To Detail

Osaka2k

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.

To Detail

XtalOpt

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for prediction of stable and metastable structures from a chemical composition. This application applies the revolutionary algorithm to structure prediction by using various external energy calculators (VASP, GULP, Quantum Espresso, CASTEP).

To Detail

QWalk

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for high-accuracy electronic-state calculation based on the variational Monte Carlo method and the diffusion Monte Carlo method. Although its computational cost is high, physical properties of atoms and small molecules in the ground states and excited states are calculated with very high accuracy. Includes an application program that generates input files from output of other packages for quantum chemical calculation, such as GAMESS, Gaussian, etc.

To Detail

QuCumber

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

QuCumber is an open-source Python package that implements neural-network quantum state reconstruction of many-body wavefunctions from measurement data such as magnetic spin projections, orbital occupation number. Given a training dataset of measurements, QuCumber discovers the most likely quantum state compatible with the measurements by finding the optimal set of parameters of a restricted Boltzmann machine (RBM).

.

To Detail

RESPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RESPACK is a first-principles calculation software for evaluating the interaction parameters of materials. It is able to calculate the maximally localized Wannier functions, the RPA response functions, and frequency-dependent electronic interaction parameters. RESPACK receives its input data from a band calculation using norm-conserving pseudopotentials with plane-wave basis sets. Utilities which convert a result of xTAPP or Quantum ESPRESSO to an input for RESPACK are prepared. The software has been used successfully for a wide range of materials such as metals, semiconductors, transition-metal compounds, and organic compounds. It supports OpenMP / MPI parallelization.

To Detail

DV-Xα

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing the DV-Xα method. It produces electronic structure for a wide rage of physical systems such as atoms, molecules and crystals. The DV-Xα method realizes high-speed computation for all-electron calculations, and makes it possible to evaluate various physical properties and electron transition probability (especially of core-electron excitation). Tools for supplying input data, and visualizing and post-processing output data are also released.

To Detail

FPLO

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

An application for first-principles calculation based on the all-electron method with localized bases. Compared with the standard all-electron method (the full-potential LAPW method), this application uses a less number of bases keeping accuracy of calculation, and realize high-speed electronic state calculation by the density functional method. This application also supports calculation for disordered structures by coherent potential approximation (CPA), relativistic effect, and the LSDA+U method.

To Detail