Program package for first-principles calculation based on all-electron calculation method and augmented plane-wave basis. This package performs electronic-state calculation such as band calculation of solids, structure optimization, first-principles molecular dynamics, and so on. All-electron method, which treats core electrons, improves accuracy in calculation compared with pseudo-potential method, and enables us to obtain chemical shifts related to core electrons. This payware can be used by making a contract with the developer.
LIQ𝑈𝑖⏐〉is a software design architecture for quantum computing. It includes a programming language designed for quantum algorithms. By using LIQ𝑈𝑖⏐〉, users can design quantum circuits and perform simulations such as quantum teleportation and quantum chemistry.
A program package for physical properties related to magnetism. This application can evaluate various physical quantities of magnetics such as crystal fields, magnetic structures, thermodynamic quantities (magnetization, specific heat, etc.), and magnetic excitation. This package can also perform fitting analysis of neutron diffraction experiments and resonant X-ray diffraction experiments, and is helpful to experimentalists.
An application for ab initio quantum chemical calculation. This application can calculate ground states and excited states of molecules by the SCF/DFT, the CASSCF/RASSCF, and the CASPT2/RASPT2 method. It is architected especially for obtaining potential energy surfaces of excited states, and maintains high-speed, high-accuracy, and robust open codes.
A full-state vector simulator of quantum circuits optimized for multi-core and multi-nodes architectures. It provides C++ and Python interfaces. Also known as qHiPSTER (The Quantum High Performance Software Testing Environment).
A package for the auxiliary field Quantum Monte Carlo method, which enables us to calculate finite-temperature properties of the Hubbard-type model. It is also possible to treat the Hubbard model coupled to a transversed Ising field. Many examples such as Hubbard model on the square lattice and the honeycomb lattice are provided in the documentation.
Software to calculate physical quantities related to phonon in solids from result calculated using first principles calculation software. Results calculated from first principles calculation software such as VASP and Wien2k are used as an input.
An open-source numerical library for machine learning. Various functions related to deep learning based on neural networks are implemented. Users can implement complex network with flexible description, and can try various state-of-the-art methods. This package is used in a number of companies in the world. This package is written by the script language, lua.
Open-source package for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs various electronic-state calculation by density functional theory such as band calculation of solids, and structure optimization of surfaces/interfaces. Detailed tutorials and documents are well prepared in this package, and many physical quantities including chemical reaction and lattice vibration can be obtained easily.
An application for analysis of extended X-ray absorption fine structure (EXAFS) based on the multiple scattering theory. This application implements relativistic self-consistent calculation using the muffin-tin approximation to evaluate atomic phase shift including effect of neighboring atoms. Spectra with any number of edges can be treated simultaneously. Complex background multi-electron excitation can also be evaluated.