Open-source package for molecular dynamics simulation designed for biological macromolecules. This package can perform molecular dynamics simulation of biological macromolecules such as proteins, lipids, and nuclear acids as well as solutions by controlling temperature and pressure. This package can treat long-range interaction and free energy, and is designed for parallel computing.
An application for visualization of biopolymers. This application can visualize biopolymers by using its original command line and graphical user interface, more than 600 settings for visualization, and more than 20 visualization schemes. This application also supports more than 30 file formats such as PDB and multi-SDF, and can utilize sophisticated visualization methods such as the ray tracing.
A program for generating maximally-localized Wannier functions from results of first-principles calculation. This program supports Quantum Espresso, abinit, SIESTA, FLEUR, Wien2k, and VASP. It can also calculate electrical conductivity and material properties related to the berry phase from the obtained MLWFs.
WEST is a package for calculating excited spectrum by using the one-shot GW method. Before calculating the excited spectrum, it is necessary to obtain the ground states from the DFT calculations (LDA/GGA/hybrid functional) by Quantum ESPRESSO. To reduce the numerical cost, WEST uses the algorithm that does not require the unoccupied bands. It is also possible to include the spin-orbit couplings and to perform the large-scale calculations at supercomputers. Installation and formats of input files are basically the same as those of Quantum ESPRESSO.
Program package for first-principles calculation based on all-electron calculation method and augmented plane-wave basis. This package performs electronic-state calculation such as band calculation of solids, structure optimization, first-principles molecular dynamics, and so on. All-electron method, which treats core electrons, improves accuracy in calculation compared with pseudo-potential method, and enables us to obtain chemical shifts related to core electrons. This payware can be used by making a contract with the developer.
Analytical tool to calculate the Z2 topological number or Chern number from given band structures, which are derived from first-principles calculations or tight-binding Hamiltonians. The topological numbers are calculated from the evolution of Wannier charge center and this method is applicable to the systems without inversion symmetries.
Code for performing many-body calculations based on the GW method, BSE method, etc. starting from Kohn-Sham wave functions obtained using density functional theory. The code relies on wave function output from either abinit or Quantum Espresso. A python interface, Yambo-py, is also under development.
Open-source program for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs electronic-state calculation with high accuracy based on density functional theory. In addition to basic-set programs, many core-packages and plugins are included. This package can be utilized for academic research and industrial development, and also supports parallel computing.
An application for visualization of large-scale many-particle simulation. This application can visualize information on a large number of particles treated in calculation of gravitational many-body problems, and provides many features for creating animations. It implements high-speed visualization with OpenGL, and supports graphical user interface (GUI) for operations.
An open source library to calculate free energy in molecular dynamics simulation. It supports several famous molecular dynamics software packages such as Amber and Lammps.