QUIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

分子動力学計算のためのソフトウェアツールを集約したパッケージ。様々な原子間ポテンシャルやタイトバインディングモデルが実装されており、多数の外部アプリの呼び出しが可能。機械学習ポテンシャルの一種であるGAP (Gaussian Approximation Potential)の訓練と評価に対応している。

アプリ詳細へ

Nano-Ignition

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

分子動力学計算の入力ファイル作成を支援するアプリケーション。原子位置・ボンド情報の手動入力、タンパク質構造データバンクからのファイル読み込み、グラフィカルユーザーインターフェースを利用したデータ編集などが可能。水素分子付加、データの合成など多様な機能を有し、少ないメモリ上で多数の原子の取り扱うことができる。

アプリ詳細へ

GaussView

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

有名な量子化学計算ソフトであるGaussianシリーズの純正可視化アプリケーション。有償・ソース非公開だが、分子モデルの構築、パラメータの設定、ジョブの管理、計算結果の表示など、多岐にわたる機能を有する。Gaussianの入力ファイル作成と各種出力ファイルを用いた結果の可視化のほか、Sybyl, Molden, PDB, CIFの構造フォーマットも読み書きできる。

アプリ詳細へ

ChemBio3D/Chem3D

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

有償の分子モデリング、可視化アプリケーション。定番の分子構造エディタであるChemDrawが同梱されており、化学構造式からのモデリングも可能。分子力学計算による構造最適化・分子動力学の機能の他、MOPAC, Jaguar, GAMESS, GaussianのGUI機能も持ち、分光学的な解析も可能。上位パッケージのChemBioOfficeやChemOfficeにも含まれている。

アプリ詳細へ

FHI-aims

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

原子基底を用いた全電子計算法に基づく第一原理計算アプリケーション。広範な物理系に対して高精度の電子状態計算を行う。ハイブリッド汎関数を含む多くの汎関数セットを有し、相対論効果、多体摂動論、GW法などにも対応している。100種を超える元素を扱えるほか、デスクトップから1万CPU程度の計算機まで高い並列効率を保つ。

アプリ詳細へ

NequIP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

E(3)-同変グラフニューラルネットワークを用いた機械学習ポテンシャルを構築し、利用するためのオープンソースソフトウェア。aseで読み込み可能な構造ーエネルギー・原子間力データを用いた学習が可能。学習済みのポテンシャルを用いてLAMMPSによる分子動力学計算を行うことができる。

アプリ詳細へ

Bader Charge Analysis

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

分子や固体の電子密度を各原子に帰属するBader解析を行うツール。LinuxとmacOS向けのバイナリ、及びソースコードがGPLライセンスで配布されている。プログラムはfortran90で記述されており、VASPのCHGCARフォーマットおよびGaussian Cubeフォーマットの電子密度データファイルに対応している。

アプリ詳細へ

Firefly

  • 公開度 2 ★★☆
  • ドキュメント充実度 2 ★★☆

非経験的量子化学計算を行うアプリケーション。ハートリー-フォック理論、密度汎関数理論、多体摂動論、配位間相互作用理論など、様々な量子化学理論を用いた分子の電子状態計算が可能。GAMESS-USをインテル互換CPU 用に特化させたものであるが、最近発展した計算手法(CC法やFMO法など)は含まれない。

アプリ詳細へ

Allegro

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

E(3)-同変グラフニューラルネットワークを用いたAllegroポテンシャルモデルを構築し、分子動力学計算に利用するためのオープンソースソフトウェア。NequIPに依存しており、NequIPと同様に利用可能。メッセージパッシングを用いずに、局所的な情報のみから原子ごとのエネルギーが計算できるため、スケーリングに優れるとされる。

アプリ詳細へ

DC

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

量子化学計算ソフトウェアGAMESSと合わせて配布されている電子状態計算ソフトウェア。エネルギー密度解析と分割統治法(DC法)を組み合わせる事で、電子相関を含む精度の高い量子化学計算が短時間で実行できる。スーパーコンピュータを使う事で、これまで困難だった多数の原子を含むナノ構造体の超高精度計算も可能。

アプリ詳細へ