PARATEC

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 0 ☆☆☆

平面波基底とノルム保存型擬ポテンシャル法に基づいた並列DFT 計算ソフトウェア。BerkeleyGW と高い互換性を持つ。

アプリ詳細へ

Quloud-RSDFT

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 0 ☆☆☆
計算物質科学研究に必要な環境一式をクラウドで提供。モデリング、計算、データ蓄積、解析といった第一原理シミュレーションの一通りがウェブブラウザのみで始められる。エンジンとしてRSDFTを採用し、今後もラインナップを増やす。グループ内でのデータ共有や、GAUSSIANVASP等、他ソフトの構造データを読み込むことも可能。
アプリ詳細へ

QMAS

  • 公開度 1 ★☆☆
  • ドキュメント充実度 1 ★☆☆

平面波基底・Projector Augmented Wave(PAW)法を用いた第一原理計算プログラム。広範な物質に対して、電子状態や各種物性値を効率よく高精度に計算する。構造最適化に加え、静磁場下の電子状態、原子スケールでの誘電率分布、エネルギー・応力分布、陽電子状態・消滅パラメータなどの計算機能を実装する。最局在ワニエ軌道を用いた電子状態の解析、スピン軌道相互作用/ノンコリニア磁性を直接考慮した電子状態計算も可能である。

アプリ詳細へ

Libxc

  • 公開度 3 ★★★
  • ドキュメント充実度 1 ★☆☆

Libxcは密度汎関数理論で用いる交換相関汎関数を計算するためのライブラリである。容易に移植出来、よくテストされている交換相関汎関数をあらゆるコードで用いることを目的として開発されている。

Libxcでは様々なタイプの汎関数、LDA・GGA・ハイブリッド汎関数・メタGGA、を選択することが出来る。これらの汎関数はある点での密度(GGAの場合はそれに加えて密度勾配、メタGGAの場合はさらに運動エネルギー密度)を与えるとその点でのポテンシャルを返すようになっている。

アプリ詳細へ

EVO

  • 公開度 3 ★★★
  • ドキュメント充実度 1 ★☆☆

進化的アルゴリズムに基づく構造予測を行うアプリケーション。ユニットセル内の原子数・種類をインプットとし、安定な構造・組成を第一原理計算・分子動力学の計算と進化的アルゴリズムによって予測する。Pythonで書かれており、Quantum ESPRESSOかGULPを外部ルーチンとして使用する。

アプリ詳細へ

RSPt

  • 公開度 3 ★★★
  • ドキュメント充実度 1 ★☆☆

局在基底・全電子計算に基づくオープンソースの第一原理計算アプリケーション。full-potential LMTO法を用いることにより、通常の全電子法に比べて少ない基底数で高速の電子状態計算が可能となっている。LMTO-ASA法にあるような対称性の制限はなく、スピン分極やスピン軌道相互作用の取り扱いが可能である。

アプリ詳細へ

GASP

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

遺伝的アルゴリズムに基づく構造予測を行うアプリケーション。結晶、分子、原子クラスターなどの安定な構造・組成を、第一原理計算や分子動力学を用いて予測する。VASP、LAMMPS、MOPAC、GULP、JDFTxなどの様々なコードとのインターフェイスを持ち、並列化されたアーキテクチャにおいても効率的に動作する。

アプリ詳細へ

RESPACK

  • 公開度 3 ★★★
  • ドキュメント充実度 2 ★★☆

物質の相互作用パラメータを評価する第一原理計算ソフトウェア。 最局在ワニエ関数、RPA応答関数、周波数依存電子間相互作用パラメータが計算可能。ノルム保存型擬ポテンシャル+平面波基底を用いるバンド計算に対応しており、xTAPP および Quantum ESPRESSO に関しては、ファイルの変換スクリプトが用意されている。金属、半導体、遷移金属化合物、有機化合物など広範な物質群を計算できる。OpenMP / MPI に対応。

アプリ詳細へ

GAMESS-UK

  • 公開度 0 ☆☆☆
  • ドキュメント充実度 2 ★★☆

非経験的量子化学計算を行うアプリケーション。ハートリー-フォック法、密度汎関数理論、多体摂動論、配位間相互作用理論などを用いた分子の電子状態計算が可能。イギリス国内でのアカデミック利用のみ無償で、そのほかは有償。歴史的にGAMESS-USと共通のコアプログラムを有するが、それ以降に発展した機能は異なる。

アプリ詳細へ

HiLAPW

  • 公開度 1 ★☆☆
  • ドキュメント充実度 2 ★★☆

全電子計算法に基づく第一原理計算アプリケーション。広範な物理系に対して、線形補強平面波(LAPW)法を用いた精度の高い電子状態計算を行い、バンド構造や構造最適化などを行うことができる。d電子を含む磁性物質の状態計算に適し、スピン軌道相互作用などの相対論的効果も取り扱うことができる。

アプリ詳細へ