TOMBO

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A first principles calculation program using all electron mixture based approach. It targets broad physical systems such as isolated systems, surfaces and interfaces, and crystals, and it calculates all electronic states from core electrons to valence electrons. It deals with calculation methods such as the GW method, and also deals with parallel calculations. It can execute with high accuracy molecular dynamics calculations for electronic excited states based on time dependent density functional theory.

To Detail

Questaal

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.

To Detail

QuCumber

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

QuCumber is an open-source Python package that implements neural-network quantum state reconstruction of many-body wavefunctions from measurement data such as magnetic spin projections, orbital occupation number. Given a training dataset of measurements, QuCumber discovers the most likely quantum state compatible with the measurements by finding the optimal set of parameters of a restricted Boltzmann machine (RBM).

.

To Detail

RESPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RESPACK is a first-principles calculation software for evaluating the interaction parameters of materials. It is able to calculate the maximally localized Wannier functions, the RPA response functions, and frequency-dependent electronic interaction parameters. RESPACK receives its input data from a band calculation using norm-conserving pseudopotentials with plane-wave basis sets. Utilities which convert a result of xTAPP or Quantum ESPRESSO to an input for RESPACK are prepared. The software has been used successfully for a wide range of materials such as metals, semiconductors, transition-metal compounds, and organic compounds. It supports OpenMP / MPI parallelization.

To Detail

RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail

RSPt

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for the first-principles calculation based on the all-electron method with localized bases. By adopting the full-potential LMTO method, high-speed electronic state calculation can be performed with a less number of bases compared with the standard all-electron method. There is no restriction on symmetries as in the LMTO-ASA method, and spin polarization and spin-orbit interaction can also be treated.

To Detail

xTAPP

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

xTAPP is a first-principles plane-wave pseudo-potential code. It computes band structure and electronic states with high precision for a wide range of materials including metals, oxide surfaces, solid interfaces, and so forth. It has support tools and visualization of output and input, is available as a massively parallel computer using OpenMP, MPI, and GPGPU.

To Detail

QUANTUM ESPRESSO

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source program for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs electronic-state calculation with high accuracy based on density functional theory. In addition to basic-set programs, many core-packages and plugins are included. This package can be utilized for academic research and industrial development, and also supports parallel computing.

To Detail

QWalk

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for high-accuracy electronic-state calculation based on the variational Monte Carlo method and the diffusion Monte Carlo method. Although its computational cost is high, physical properties of atoms and small molecules in the ground states and excited states are calculated with very high accuracy. Includes an application program that generates input files from output of other packages for quantum chemical calculation, such as GAMESS, Gaussian, etc.

To Detail

DSQSS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

DSQSS is an application program for solving quantum many body problems in a discrete set (typically a lattice). It carries out quantum Monte Carlo simulations that sample from the Feynman path integral using the worm update. It can handle any lattice geometry and interaction.

To Detail