Gromacs

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source package for molecular dynamics simulation designed for biological macromolecules. This package can perform molecular dynamics simulation of biological macromolecules such as proteins, lipids, and nuclear acids as well as solutions by controlling temperature and pressure. This package can treat long-range interaction and free energy, and is designed for parallel computing.

To Detail

GSAS-II

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for the single-crystal analysis and the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines crystal structure models of materials from X-ray and neutron diffraction data on single-crystal and powder samples. It has been developed based on Python. Graphical user interface (GUI) can be used.

To Detail

GULP

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

An application program for lattice dynamics calculation of molecules, surfaces, and solids in various boundary conditions. It lays emphasis on analytic calculation of lattice dynamics while it can perform molecular dynamics simulation as well. It supports various force fields to treat ionic materials, organic materials, and metals. It also implements analytic derivatives of the second and third order for many force fields.

To Detail

H-wave

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

H-wave is a Python package for performing unrestricted Hartree-Fock (UHF) calculations and random phase approximation (RPA) calculations for itinerant electron systems. H-wave supports UHF calculations both in real- and wavenumber-spaces. H-wave supports one-body and two-body interactions in the Wannier90 format as inputs for H-wave, and thus users can solve ab initio effective Hamiltonians derived from  Wannier90/RESPACK calculations based on UHF and RPA methods.

To Detail

Harlem

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source multi-purpose application for modeling and visualizing molecules (biomolecules, in particular). This application has been developed for multi-scale molecular simulation, and also provides a simple GUI for AMBER and Gaussian. It also implements exchange of protein residues and the Pathways model for the electron transfer in proteins. It calls rasmol for visualization of atoms and molecules.

To Detail

HiLAPW

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing all-electron method. This application produces band structure and allows structure relaxation by high-accuracy electronic structure calculations based on linearized augmented plane wave (LAPW) method for a wide range of systems. It is suited to magnetic materials, and can deal with relativistic effects such as the spin-orbit interaction.

To Detail

homcloud

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A Python package for extracting structural features from point cloud and image data using the mathematical framework of persistent homology. In the field of materials science, it is used to characterize structural differences between liquids and glasses, as well as for dimensionality reduction of microscope images. It is also useful for obtaining structural descriptors for machine learning.

To Detail

HORTON

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.

To Detail

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An exact diagonalization package for a wide range of quantum lattice models (e.g. multi-orbital Hubbard model, Heisenberg model, Kondo lattice model). HΦ also supports the massively parallel computations. The Lanczos algorithm for obtaining the ground state and thermal pure quantum state method for finite-temperature calculations are implemented. In addition, dynamical Green’s functions can be calculated using , which is a library of the shifted Krylov subspace method. It is possible to perform simulations for real-time evolution from ver. 3.0.

To Detail

ICSD

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

A commercial database of inorganic crystal structures. This database is run by FIZ Karlsruhe. 181,000 crystal structure data are registered as of March 2016. 6,000 crystal structure data are added per year on average, and data are updated twice per year based on data in published scientific journals.

To Detail