Avogadro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of molecular modeling/editing for quantum chemical calculation. This application supports graphical user interface (GUI) for input-file preparation for software of quantum chemical calculation such as GAMESS, Gaussian, etc., and displays their results by reading output files. It can also make movies in the formats of vector graphics, POV-Ray, and so on.

To Detail

HOOMD-blue

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source multi-purpose application for many-particle simulation. This application prepares various kinds of statistical methods and potentials, and can perform simulation of rigid-body mechanics, Langevin dynamics, dissipative-particle dynamics, nonequilibrium molecular dynamics, and so on. It prepares python scripts for production of initial conditions, job submission, and analysis of results.

To Detail

SPRKKR

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A open-source application of first-principles calculation for the electronic structure, using the KKR method, a variant of Green’s function method. It is based on the density functional theory and is applicable to crystals and surfaces. The coherent potential approximation (CPA) is adopted, so it can handle not only periodic systems, but also disordered alloys. It can also handle spin-orbit interaction and non-collinear magnetism.

To Detail

USPEX

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for prediction of stable and metastable structures from a chemical composition. For prediction of structures, this application combines the first-principles calculation by external packages (VASP, GULP, siesta, Quantum Espresso, STM4, CP2k, etc.) with various efficient algorithms such as the evolutionary algorithm.
It can be applied to prediction of, e.g., structure of crystals under extreme pressure, nanoparticles, and surface reconstruction.

To Detail

Z2Pack

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Analytical tool to calculate the Z2 topological number or Chern number from given band structures, which are derived from first-principles calculations or tight-binding Hamiltonians. The topological numbers are calculated from the evolution of Wannier charge center and this method is applicable to the systems without inversion symmetries.

To Detail

Blueqat

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open-source Python code for simulation of gate-type quantum computers. Blueqat can call Qiskit, a quantum computing development tool, to run IBM Q, a gate-type quantum computer.

To Detail

QUIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.

To Detail

Bilbao Crystallographic Server

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Web server that offers various crystallographic tools free of charge. The server offers over 70 tools/utilities related to space group, magnetic space group, representation theory, scattering theory, etc. The tools are accessed through a web interface.

To Detail

SMASH

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

To Detail

IFEFFIT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for data analysis of X-ray absorption fine structure (XAFS). By interactive operation using a command line, experimental data of XAFS can be analyzed by various analysis methods. This application also supports various useful functions such as high-speed Fourier analysis, fitting in the radial/k-space coordinates, and data plotting.

To Detail