RSPt

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for the first-principles calculation based on the all-electron method with localized bases. By adopting the full-potential LMTO method, high-speed electronic state calculation can be performed with a less number of bases compared with the standard all-electron method. There is no restriction on symmetries as in the LMTO-ASA method, and spin polarization and spin-orbit interaction can also be treated.

To Detail

RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail

RESPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RESPACK is a first-principles calculation software for evaluating the interaction parameters of materials. It is able to calculate the maximally localized Wannier functions, the RPA response functions, and frequency-dependent electronic interaction parameters. RESPACK receives its input data from a band calculation using norm-conserving pseudopotentials with plane-wave basis sets. Utilities which convert a result of xTAPP or Quantum ESPRESSO to an input for RESPACK are prepared. The software has been used successfully for a wide range of materials such as metals, semiconductors, transition-metal compounds, and organic compounds. It supports OpenMP / MPI parallelization.

To Detail

Superconducting Toolkit (sctk)

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for evaluating superconducting gaps from resutls of the first-principles calculation by Quantum ESPRESSO. By calculating electron-phonon interaction and screened Coulomb interaction from the first-principles calculation, superconducting gaps can be obtained from the gap equation. Quasiparticle densities of states and ultrasonic attenuation rates can also be calculated.

To Detail

Libxc

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Libxc is an library for exchange-correlation functions in the density functional theory. This has been developed for the purpose that well-tested exchange-correlation functions can be easily used in any DFT codes. In Libxc, users can find several types of exchange-correlation functions: LDA, GGA, hybrid-GGA, and meta-GGA.

To Detail

PySCF

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform written in Python. Users can perform mean-field and post-mean-field methods with standard Gaussian basis functions. This package also provides several interfaces to other software such as BLOCK and Libxc.

To Detail

Questaal

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.

To Detail

psi4

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for quantum chemical calculation. This package implements various methods for quantum chemical calculation such as Hartree-Fock approximation, density functional theory, coupled-cluster method, and CI (configuration interaction) method. The package is written in C++, and provides API for Python, by which users can perform for preparation of setting and execution of calculation.

To Detail

AMULET

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

AMULET is a collection of tools for a first principles calculation of physical properties of strongly correlated materials. It is based on density functional theory (DFT) combined with dynamical mean-field theory (DMFT). Users can calculate physical properties of chemically disordered compounds and alloys within CPA+DMFT formalism.

To Detail

FPSEID21

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

First-principles software based on plane-wave basis and norm-conserving pseudopotential methods. Time-dependent DFT has been implemented. Users can perform real-time simulations for electron-ion dynamics under a time-dependent external field. Pseudopotentials with FPSEID21 format should be used, and those are downloadable from the website.

To Detail