A highly efficient framework for crystal structure exploration and property prediction dedicated to material science calculations. This application can automate the setup, execution, and analysis of the results of calculations based primarily on the density functional theory. It provides data on more than millions of crystal structures and can be used for high throughput calculations for material exploration. It also interfaces with various DFT codes (VASP, Quantum ESPRESSO, etc.).
An open-source application for first-principles calculation based on all-electron calculations. In addition to ground-state energy and forces on atoms obtained by density functional theory, it focuses on investigation of excited state properties using time-dependent density functional theory as well as many-body perturbation theory. It is parallelized using MPI and is also optimized for multithreaded math libraries such as BLAS and LAPACK.
Open-source package for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs various electronic-state calculation by density functional theory such as band calculation of solids, and structure optimization of surfaces/interfaces. Detailed tutorials and documents are well prepared in this package, and many physical quantities including chemical reaction and lattice vibration can be obtained easily.
An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.
AkaiKKR is a first-principles all-electron code package that calculates the electronic structure of condensed matters using the Green’s function method (KKR). It is based on the density functional theory and is applicable to a wide range of physical systems. It can be used to simulate not only periodic crystalline solids, but also used to calculate electronic structures of impurity systems and, by using the coherent potential approximation (CPA), random systems such as disordered alloys, mixed crystals, and spin-disordered systems.
An open-source application for the first-principles calculation by the all-electron calculation method based on plane wave bases. This application can perform electronic state calculation by the density functional theory (DFT). This appication also supports the LDA+U method, treatment of spin-orbit interaction and noncolinear magnetism, the GW approtimation, and downfolding by the constraint RPA method.
An open-source program package for first-principles calculation based on a mixed augmented plane wave method (the PMT method). For various physical systems, this package performs electronic structure calculation and structure optimization by LDA, GGA, LDA+U and so on. It further can treat quasi-particle excitation with high accuracy by the quasi-particle self-consistent GW method. It implements several original methods not included in other program packages, and is maintained by the version control system, Git.
An open-source application for the first-principles calculation by the all-electron calculation method based on plane wave bases. In addition to standard methods (LDA, GGA, etc.), the LDA+U method, treatment of spin-orbit interaction (noncolinear magnetism), and calculation of phonons are supported. Hybrid parallel computing by OpenMP and MPI is also supported.
A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.
Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.