An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.
An open source application to simulate crystal structures and to calculate and refine against diffraction pattern and the pair distribution function. A special emphasis placed is on the simulation of materials with disorder and the package provides many tools to create and distribute defects throughout the crystal. Another strong feature is the simulation of nanoparticles.
An open-source application for molecular simulations. This application supports various methods such as classical and ab initio molecular dynamics, path integral simulations, replica exchange simulations, metadynamics, string method, surface hopping dynamics, QM/MM simulations, and so on. A hierarchical parallelization between molecular structures (replicas) and force fields (adiabatic potentials) enables fast and efficient computation.
A package for the auxiliary field Quantum Monte Carlo method, which enables us to calculate finite-temperature properties of the Hubbard-type model. It is also possible to treat the Hubbard model coupled to a transversed Ising field. Many examples such as Hubbard model on the square lattice and the honeycomb lattice are provided in the documentation.
DSQSS is an application program for solving quantum many body problems in a discrete set (typically a lattice). It carries out quantum Monte Carlo simulations that sample from the Feynman path integral using the worm update. It can handle any lattice geometry and interaction.
An open-source application for visualization of atoms and molecules developed for molecular dynamics. This application supports a number of input file formats for molecular configration, and can perform visualization of three-dimensional atom configration as well as creation of a animation. The main feature of this application is that various useful analysis tools can be used by intuitive control of a graphical user interface (GUI).
ALPS is a numerical simulation library for strongly correlated systems such as magnetic materials or correlated electrons. It contains typicalsolvers for strongly correlated systems: Monte Carlo methods, exact diagonalization, the density matrix renormalization group, etc. It can be used to calculate heat capacities, susceptibilities, magnetization processes in interacting spin systems, the density of states in strongly correlated electrons, etc. A highly efficient scheduler for parallel computing is another improvement.
※Related links are temporary changed due to the server maintenance for ALPS project.
Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.
Server for computing exact ground state of Ising model with random interacitons (Ising spin glasses). Users can specify the distributions of the interactions and the geometry of lattices. By inputting the informaiont of the model, users will receive the computational results by e-mail from the server.
QMCPACK is a modern high-performance open-source Quantum Monte Carlo (QMC) simulation code. Its main applications are electronic structure calculations of molecular, quasi-2D and solid-state systems. Variational Monte Carlo (VMC), diffusion Monte Carlo (DMC), orbital space auxiliary field QMC (AFQMC) and a number of other advanced QMC algorithms are implemented.