abICS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software framework for performing configurational sampling in disordered systems. It has been developed with an emphasis on multi-component solid-state systems such as metal and oxide alloys. At present, Quantum Espresso, VASP and aenet can be used as energy calculators, and massively-parallel first-principles thermodynamic sampling is performed by combining them with the replica exchange Monte Carlo method.

To Detail

ALF (Algorithms for Lattice Fermions)

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A package for the auxiliary field Quantum Monte Carlo method, which enables us to calculate finite-temperature properties of the Hubbard-type model. It is also possible to treat the Hubbard model coupled to a transversed Ising field. Many examples such as Hubbard model on the square lattice and the honeycomb lattice are provided in the documentation.

To Detail

ALPS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

ALPS is a numerical simulation library for strongly correlated systems such as magnetic materials or correlated electrons. It contains typicalsolvers for strongly correlated systems: Monte Carlo methods, exact diagonalization, the density matrix renormalization group, etc. It can be used to calculate heat capacities, susceptibilities, magnetization processes in interacting spin systems, the density of states in strongly correlated electrons, etc. A highly efficient scheduler for parallel computing is another improvement.

To Detail

ALPSCore

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open-source software for building computational physics applications. Common C++ auxiliary modules required for various methods in computational physics such as the quantum Monte Carlo method are prepared. This software helps to build reusable codes and to reduce development time for complex computational science applications. It also supports parallel programming based on MPI or OpenMP.

To Detail

ALPSCore/CT-HYB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source impurity solver based on the quantum Monte Carlo method. Thermal equilibrium states of interacting impurity systems, such as the impurity Anderson model, can be evaluated by the continuous-time hybridization-expansion quantum Monte Carlo method. It can be used as a solver of effective impurity models derived from the dynamical mean-field theory (DMFT) and can deal with multi-orbital models. This package supports parallel computation by MPI and is developed based on the ALPSCore library.

To Detail

CP2K

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.

To Detail

DCA++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

DCA++ is a software framework to solve correlated electron problems with modern quantum cluster methods. This code provides a state of the art implementation of the dynamical cluster approximation (DCA) and its DCA+ extension. As the cluster solvers, DCA++ provides the continuous-time auxiliary field QMC (CT-AUX) , the continuous-time hybridization expansion (CT-HYB) restricted to single-site problems, the high temperature series expansion (HTS) and the exact diagonalization(ED).

To Detail

DISCUS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open source application to simulate crystal structures and to calculate and refine against diffraction pattern and the pair distribution function. A special emphasis placed is on the simulation of materials with disorder and the package provides many tools to create and distribute defects throughout the crystal. Another strong feature is the simulation of nanoparticles.

To Detail

DSQSS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

DSQSS is an application program for solving quantum many body problems in a discrete set (typically a lattice). It carries out quantum Monte Carlo simulations that sample from the Feynman path integral using the worm update. It can handle any lattice geometry and interaction.

To Detail

i-PI

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

i-PI is a universal force engine interface written in Python, designed to be used together with an ab-initio (or force-field based) evaluation of the interactions between the atoms. This application includes a large number of sophisticated methods such as replica exchange molecular dynamics (REMD) and path integral molecular dynamics (PIMD). Inter-atomic forces can be computed by using external codes such as CP2K, Quantum ESPRESSO and LAMMPS.

To Detail