An open-source application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, many-body perturbation, configuration interaction theories, and so on. Even though this application is freeware, it succeeds in maintaining high-quality and high-performance codes by active development, and has a number of world-wide users. It histrically shares core programs with GAMESS-UK.
A general-purpose open-source application for classical molecular dynamics simulation, distributed under the GPL license. This package can perform molecular dynamics calculation of various systems such as soft matters, solids, and mesoscopic systems. It can be used as a simulator of classical dynamics of realistic atoms as well as general model particles. It supports parallel computing through spatial divisions. Its codes are designed so that their modification and extension are easy.
An application for adding a function of the replica exchange method to the existing applications for molecular dynamics simulation such as MODYLAS, AMBER, and CHARMM. Without changing original programs of molecular dynamics, the replica exchange method can be implemented easily. This application also shows high performance in massive parallel computing by the K-computer.
NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and machine learning techniques. Users can perform machine learning algorithms to find the ground-state of many-body Hamiltonians such as supervised learning of a given state and optimization of neural network states by using the variational Monte Carlo method.
A database for thermodynamic properties and crystal structures calculated based on the density functional theory by a research group in Northwestern University. OQMD provides over one million data generated by using not only experimental crystal structures provided by ICSD but also those obtained by calculations. Users can search data in OQMD by using Python API.
An open-source application for simulation of low-dimensional interacting electron models based on density-matrix renormalization group (DMRG). For effective models of one-dimensional quantum systems and impurity systems, this application can treat not only physical quantities of ground states but also time evolution and finite-temperature physical quantities. The program is coded in C++, and can be called from MATLAB scripts.
An interface tool for combining first-principles calculation based on density functional theory (DFT) and TRIQS, the application for dynamical mean-field theory (DMFT). By combining Wien2k and TRIQS, self-consistent DFT+DMFT calculation can be realized by this tool. One-shot DFT+DMFT calculation using band structures obtained by other first-principles applications is also possible.
Application for performing first-principles simulations with an implicit solvent model. The code is released as a patch to VASP. The user can perform molecular dynamics as well as reaction analysis using e.g., nudged elastic band method.
Parallel C++ Library for tensor network methods. This library provides common operations, including tensor contraction and singular value decomposition and supports a similar interface as Numpy and Scipy in Python.
aenet is software for atomic interaction potentials using artificial neural networks. Users can construct neural network potentials using structures of target materials and their energies obtained from first principle calculations. The generated potentials can be used to molecular dynamics or Monte Carlo simulations.