Open-source package for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs various electronic-state calculation by density functional theory such as band calculation of solids, and structure optimization of surfaces/interfaces. Detailed tutorials and documents are well prepared in this package, and many physical quantities including chemical reaction and lattice vibration can be obtained easily.
An application for numerical renormalization group calculations. This application can solve magnetic impurity problems described by the Kondo model and the Anderson model. Input files are prepared for typical impulity models. By modifying input files, one can study more general models of the magnetic impurity problems. A mathematica program for generation of input files are also included.
An open-source application for semi-empirical quantum chemical calculation based on NDDO (neglect of diatomic differential overlap) approximation. This program calculates, for a given molecule or a crystal, molecular orbits and atomic forces, as well as vibration spectra, thermal quantities (heat of formation etc.), isotopic exchange effect, force constant, and so on. It can also treat radicals and ions.
WEST is a package for calculating excited spectrum by using the one-shot GW method. Before calculating the excited spectrum, it is necessary to obtain the ground states from the DFT calculations (LDA/GGA/hybrid functional) by Quantum ESPRESSO. To reduce the numerical cost, WEST uses the algorithm that does not require the unoccupied bands. It is also possible to include the spin-orbit couplings and to perform the large-scale calculations at supercomputers. Installation and formats of input files are basically the same as those of Quantum ESPRESSO.
An open source library for implementing tensor networks. It is developed based on TensorFlow and is designed to be easily used by experts in the field of machine learning as well as in the field of physics. In addition to TensorFlow, it includes wrappers for JAX, PyTorch, and Numpy.
AkaiKKR is a first-principles all-electron code package that calculates the electronic structure of condensed matters using the Green’s function method (KKR). It is based on the density functional theory and is applicable to a wide range of physical systems. It can be used to simulate not only periodic crystalline solids, but also used to calculate electronic structures of impurity systems and, by using the coherent potential approximation (CPA), random systems such as disordered alloys, mixed crystals, and spin-disordered systems.
A group of applications that perform molecular dynamics, hybrid quantum/classical mechanical simulation, search of chemical reaction path by the nudged elastic band method, and potential parameter fitting. The molecular dynamics code includes interatomic potentials for several metals and semiconductors, and is capable of parallel computation based of spatial decomposition.
MODYLAS is a highly parallelized general-purpose molecular dynamics (MD) simulation program appropriate for very large physical, chemical, and biological systems. It is equipped most standard MD techniques including free energy calculations based on thermodynamic integration method. Long-range forces are evaluated rigorously by the fast multipole method (FMM) without using the fast Fourier transform (FFT) in order to realize excellent scalability. The program enables investigations of large-scale real systems such as viruses, liposomes, assemblies of proteins and micelles, and polymers. It works on ordinary linux machines, too.
An open-source application for molecular dynamics simulation of biomolecules. This application is optimized for massive parallel computing environments such as the K-computer, and can perform high-speed molecular dynamical simulation of proteins and biomolecules. This application supports both all atoms calculation and coarse-grained model calculation, and can treat extended ensemble such as a replica exchange method. This code is released under GPL license.
An open-source application for the first-principles calculation based on the all-electron method with localized bases. By adopting the full-potential LMTO method, high-speed electronic state calculation can be performed with a less number of bases compared with the standard all-electron method. There is no restriction on symmetries as in the LMTO-ASA method, and spin polarization and spin-orbit interaction can also be treated.