DiffPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for atomic structure analysis from powder diffraction data. This application can calculate atomic coordinates, valence sums, and chemical bonds from diffraction data of crystals, nanostructures, and amorphous materials. It is written in Python, and realizes multi-functional fitting and flexible data analysis.

To Detail

DISCUS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open source application to simulate crystal structures and to calculate and refine against diffraction pattern and the pair distribution function. A special emphasis placed is on the simulation of materials with disorder and the package provides many tools to create and distribute defects throughout the crystal. Another strong feature is the simulation of nanoparticles.

To Detail

DMRG++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for simulation based on the density-matrix renormalization group (DMRG). This application can perform high-speed calculation of low-dimensional quantum systems with high accuracy. It implements generic programming techniques in the C++ language, and can easily extend simulation to new models and geometries. It is developed putting emphasis on user-friendly interfaces and low dependences on environments.

To Detail

DSQSS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

DSQSS is an application program for solving quantum many body problems in a discrete set (typically a lattice). It carries out quantum Monte Carlo simulations that sample from the Feynman path integral using the worm update. It can handle any lattice geometry and interaction.

To Detail

DV-Xα

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing the DV-Xα method. It produces electronic structure for a wide rage of physical systems such as atoms, molecules and crystals. The DV-Xα method realizes high-speed computation for all-electron calculations, and makes it possible to evaluate various physical properties and electron transition probability (especially of core-electron excitation). Tools for supplying input data, and visualizing and post-processing output data are also released.

To Detail

DC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An electronic state solver distributed with GAMESS, the quantum chemical (QM) calculation software. Combining energy density analysis and Divide-and-Conquer (DC) method, accurate QM calculation with electronic correlation is solved in a short time. Highly accurate QM calculations for many-atom/nano-scale material can be solved when run on a high performance super computer.

To Detail

DCore

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A tool for performing quantum many-body simulations based on dynamical mean-field theory. In addition to predefined models, one can construct and solve an ab-initio tight-binding model by using wannier 90 or RESPACK. We provide a post-processing tool for computing physical quantities such as the density of state and the momentum resolved spectral function. DCore depends on external libraries such as TRIQS and ALPSCore.

To Detail

DCA++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

DCA++ is a software framework to solve correlated electron problems with modern quantum cluster methods. This code provides a state of the art implementation of the dynamical cluster approximation (DCA) and its DCA+ extension. As the cluster solvers, DCA++ provides the continuous-time auxiliary field QMC (CT-AUX) , the continuous-time hybridization expansion (CT-HYB) restricted to single-site problems, the high temperature series expansion (HTS) and the exact diagonalization(ED).

To Detail

Demeter

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for data analysis of X-ray absorption fine structure (XAFS). Experimental data of XAFS can be analyzed by various analysis methods. This application supports various analysis functions (high-speed Fourier analysis, fitting in a radial coordinate or k-space, data plotting, etc.) based on IFEFFIT, and includes useful graphical user interface (GUI).

To Detail

DiracQ

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

DiracQ is a Mathematica nodebook for calculating commutation relations, which frequently appear in the quantum mechanics. DiracQ can treat canonical operators (canonical momentum and canonical position operators), Fermion operators, and Boson operators.

To Detail