Last Update:2021/12/10

Official site


GPL v. 3


Linux, Mac, Windows via WSL or container

Core Developers
  1. Martin Diehl (KU Leuven, Dept. of Computer Science & Dept. of Materials Engineering)
  2. Philip Eisenlohr (Michigan State University, Chemical Engineering and Materials Science Dept.)
  3. Franz Roters (Max-Planck-Institut für Eisenforschung, Dept. Microstructure Physics and Alloy Design
  4. Sharan Roongta (Max-Planck-Institut für Eisenforschung, Dept. Microstructure Physics and Alloy Design
  5. Pratheek Shanthraj (University of Manchester, Dept. of Materials)
Target substance/model
  • Metals
  • Alloys
Physical quantities that can be computed
  • Strain
  • Stress
  • Crystallographic Orientation
  • Dislocation Density
  • Temperature
  • Plastic Shear
  • Crystal Plasticity
  • Heat Transfer
  • Continuum Mechanics

hybrid OpenMP/MPI

Related App
  1. F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S. L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friak, N. Fujita, N. Grilli, K. G. F. Janssens, N. Jia, P. J. J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, and D. Raabe. DAMASK – The Düsseldorf Advanced Material Simulation Kit for Modelling Multi-Physics Crystal Plasticity, Damage, and Thermal Phenomena from the Single Crystal up to the Component Scale Computational Materials Science, 158:420–478, 2019. doi:10.1016/j.commatsci.2018.04.030.
  2. Roters, P. Eisenlohr, T.R. Bieler, and D. Raabe. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering. Wiley-VCH, 2010. doi:10.1002/9783527631483.