OpenFFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

OpenFFT is an open source parallel package for computing multi-dimensional Fast Fourier Transforms (3-D and 4-D FFTs) of both real and complex numbers of arbitrary input size. It originates from OpenMX (Open source package for Material eXplorer). OpenFFT adopts a communication-optimal domain decomposition method that is adaptive and capable of localizing data when transposing from one dimension to another for reducing the total volume of communication. It is written in C and MPI, with support for Fortran through the Fortran interface, and employs FFTW3 for computing 1-D FFTs.

To Detail

QMCSGF

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open source application implementing path-integral Monte Carlo method based on Stochastic Green function method. Finite temperature calculation of extended Bose Hubbard model and Heisenberg model with finite field can be treated. JSON and YAML formats are adopted for data I/O.

To Detail

Keras

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source numerical library for machine learning. Using other machine learning numerical libraries (TensorFlow, CNTK, Theano, etc.), users can construct neural networks by relatively short codes. Since a number of methods in machine learning and deep learning are implemented, users can try state-of-the-art methods easily. This package is written by Python.

To Detail

BerkeleyGW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

BerkeleyGW is an open-source program package to calculate quasi-particle spectrum and optical responses from mean-field result by using GW approximation and Bethe-Salpeter equation. This is compatible with output files of many commonly used DFT codes such as Quantum ESPRESSO.

To Detail

Avogadro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of molecular modeling/editing for quantum chemical calculation. This application supports graphical user interface (GUI) for input-file preparation for software of quantum chemical calculation such as GAMESS, Gaussian, etc., and displays their results by reading output files. It can also make movies in the formats of vector graphics, POV-Ray, and so on.

To Detail

MMSP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of C++ interfaces for simulation of mesoscale properties based on grid data. By using provided header files, one can easily construct programs for simulation of various phenomena such as solidification, crystal growth, and spinodal decomposition, based on a Monte Carlo method, cellar automaton, and a phase-field method. This interface supports parallel computing by MPI, and also provides converters of output files for visualization software such as ParaView.

To Detail

POV-Ray

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for three-dimensional visualization with the ray tracing method. This application can visualize arbitrary positions and shapes of objects such as spheres and cubes. It can visualize three-dimensional data obtained from computational fluid dynamics etc. by volume rendering. It can also be used for simple three-dimensional graphical simulator with macro functions.

To Detail

VMD

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for modeling, visualization, and analysis of biomolecule systems such as proteins, nuclear acids, and lipid bilayers. This application visualizes biomolecules by reading Protein Data Bank (PDB) files. It supports various options in rendering and coloring of molecules, and also can animate the result of a molecular dynamics simulation.

To Detail

k-ep

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Fortran codes for computing the specified k-th eigenvalue and eigenvector for generalized symmetric definite eigenvalue problems. Sylvester’s law of inertia is employed as the fundamental principle in computations, and the sparse direct linear solver (MUMPS) is used in the main routine. By inputting Hamiltonian and its overlap matrices, user can compute electron’s energy and its wave function in the specified k-th energy level.

To Detail

Qulacs

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

C ++ / Python library for simulation of quantum computer. Users can perform simulations of quantum circuits constructed from variational quantum circuits and noisy quantum gates for the development of NISQ devices. It also supports OpenMP and GPU parallelization.

To Detail