A simple open-source application for visualization compatible to Protein Data Bank (PDB) format. This application also supports other formats such as Sybyl, Molden, Mopac, and CHARMM. It is a pioneering piece of software as an interactive PDB viewer.
Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.
ERmod is software for calculating the free energy in soft, molecular aggregate. This program rapidly and accurately calculates the free energy of binding of a molecule in the aggregate through combination of the molecular dynamics simulation and the energy-representation theory of solvation. The solubility of a molecule can be determined with ERmod in arbitrary solvent including supercritical fluid and ionic liquid. Assessment is also possible for the binding strength and site of a molecule in micelle, lipid membrane or protein.
An exact diagonalization package for a wide range of quantum lattice models (e.g. multi-orbital Hubbard model, Heisenberg model, Kondo lattice model). HΦ also supports the massively parallel computations. The Lanczos algorithm for obtaining the ground state and thermal pure quantum state method for finite-temperature calculations are implemented. In addition, dynamical Green’s functions can be calculated using Kω, which is a library of the shifted Krylov subspace method. It is possible to perform simulations for real-time evolution from ver. 3.0.
A first principles calculation program using all electron mixture based approach. It targets broad physical systems such as isolated systems, surfaces and interfaces, and crystals, and it calculates all electronic states from core electrons to valence electrons. It deals with calculation methods such as the GW method, and also deals with parallel calculations. It can execute with high accuracy molecular dynamics calculations for electronic excited states based on time dependent density functional theory.
An open-source application for molecular dynamics simulation of biomolecules. This application is optimized for massive parallel computing environments such as the K-computer, and can perform high-speed molecular dynamical simulation of proteins and biomolecules. This application supports both all atoms calculation and coarse-grained model calculation, and can treat extended ensemble such as a replica exchange method. This code is released under GPL license.
2DMAT is a framework for applying a search algorithm to a direct problem solver to find the optimal solution. In version 1.0, for solving a direct problem, 2DMAT offers the wrapper of the solver for the total-reflection high-energy positron diffraction (TRHEPD) experiment. As algorithms, it offers the Nelder-Mead method, the grid search method, the Bayesian optimization method, and the replica exchange Monte Carlo method. Users can define original direct problem solvers or the search algorithms.
Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.
An open-source application of molecular modeling/editing for quantum chemical calculation. This application supports graphical user interface (GUI) for input-file preparation for software of quantum chemical calculation such as GAMESS, Gaussian, etc., and displays their results by reading output files. It can also make movies in the formats of vector graphics, POV-Ray, and so on.
An open-source application for first-principles calculation based on all-electron calculations. In addition to ground-state energy and forces on atoms obtained by density functional theory, it focuses on investigation of excited state properties using time-dependent density functional theory as well as many-body perturbation theory. It is parallelized using MPI and is also optimized for multithreaded math libraries such as BLAS and LAPACK.