mumax3

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for micromagnetic simulation optimized for general-purpose computing on GPU. This application can calculate spatial distribution of magnetization with speed of more than 100 times compared with CPU calculation. This application can also treat the RKKY interaction, effect of spin injection, and Voronoi diagrams. It supports remote computing using its web-GUI system.

To Detail

mVMC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A low-energy solver for a wide ranger of quantum lattice models (multi-orbital Hubbard model, Heisenberg model, Kondo-lattice model) by using variational Monte Carlo method. User can obtain high-accuracy wave functions for ground states of above models. Users flexibly choose the correlation factors in wavefunctions such as Gutzwiller, Jastrow, and doublon-holon binding factors and optimize more the ten thousand variational parameters. It is also possible to obtain the low-energy excited states by specifying the quantum number using the quantum number projection.

To Detail

myPresto

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Commercially-available free software for Computer-Aided Drug Development. It includes programs for compound database, protein-compound docking, structure-based drug screening, ligand-based drug screening, protein-ligand binding site prediction, molecular editor, physical property prediction, synthetic accessibility prediction, thermodynamic calculation including multi-canonical dynamics, and molecular dynamics simulations with and without acceleration using GPUs and MPI parallelization.

To Detail

n2p2

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package that implements Behler-Parinello type neural network potential. The package provides tools for training and evaluating potentials based on given structure-energy data. It also provides an interface with LAMMPS for performing molecular dynamics calculations.

To Detail

NAMD

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for molecular dynamics simulation of biomolecules, especially designed for massively parallel computing. This package enables us to perform efficient parallel calculation on parallel computers ranging from 100 to 20,000 cores. For preparation of calculation and analysis of orbits, it uses visualization software VMD. It supports file formats compatible with other applications such as AMBER and CHARMM, and can be used on various computing environments.

To Detail

Nano-Ignition

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A support application for preparing input files of molecular dynamics calculation. This application supports manual input of atomic coordinates and bond informations, reading files of protain structure database, and editing data by graphical user interface. It also implements various functions such as addition of hydrogen atoms and composition of data. and can treat a large number of atoms using only a moderate memory cost.

To Detail

NAP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A group of applications that perform molecular dynamics, hybrid quantum/classical mechanical simulation, search of chemical reaction path by the nudged elastic band method, and potential parameter fitting. The molecular dynamics code includes interatomic potentials for several metals and semiconductors, and is capable of parallel computation based of spatial decomposition.

To Detail

NCON

  • Level of openness 2 ★★☆
  • Document quality 1 ★☆☆

A MATLAB function for the contraction process of a tensor network. It takes as input a tensor network and a contraction sequence describing how to contract the network to a single tensor or number. It returns a single tensor or number as output. This function can be obtained by downloading the preprint source.

To Detail

NequIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.

To Detail

NetKet

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and machine learning techniques. Users can perform machine learning algorithms to find the ground-state of many-body Hamiltonians such as supervised learning of a given state and optimization of neural network states by using the variational Monte Carlo method.

To Detail