Matrix Product Toolkit

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A program package for numerically solving effective lattice models using matrix product states (MPS). The ground state of a one-dimensional quantum system and its time evolution can be numerically evaluated by using an infinite system algorithm based on MPS. Useful tutorials and examples of calculations are also provided.

To Detail

Maxent

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Tool for performing analytical continuation for many-body Green’s functions by using the maximum entropy method. From the data of the Green functions on the imaginary axis, users can obtain the values of the Green’s functions on the real axis. This tool supports the several different Green’s functions (Bozonic, Fermionic, anomalous, etc.).

To Detail

McPhase

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A program package for physical properties related to magnetism. This application can evaluate various physical quantities of magnetics such as crystal fields, magnetic structures, thermodynamic quantities (magnetization, specific heat, etc.), and magnetic excitation. This package can also perform fitting analysis of neutron diffraction experiments and resonant X-ray diffraction experiments, and is helpful to experimentalists.

To Detail

MDACP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

MDACP (Molecular Dynamics code for Avogadro Challenge Project) is an efficient implementations of classical molecular dynamics (MD) method for the Lennard-Jones particle systems. MDACP Ver. 1.xx adopts flat-MPI and Ver. 2.xx adopts MPI+OpenMP hybrid parallelization.

To Detail

Meep

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for the electromagnetic field simulation based on the finite-difference time-domain (FDTD) method. Time-evolution of the electromagnetic field in the system written by 1-, 2-, and 3-dimensional orthogonal coordinates and cylinder coordinates can be calculated under various boundary conditions and spatial dependence of permittivity and permeability. The main programs are written by C++, and can be called from Python scripts.

To Detail

MICRESS

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for simulating microstructures of alloys based on a phase-field method. This application can treat various problems in multi-component alloy systems such as solidification, solid-phase transition, and dynamics of crystal growth. Any required thermodynamic quantities can be obtained by calculating phase diagram or by direct coupling to the thermodynamic data calculated by other application.

To Detail

Missing

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for atomic multiplet calculation used in X-ray spectroscopies. This application consists of several calculation modules and graphical user interface, and can perform multiplet calculation of atoms. It can take into account effect of crystal fields and charge transfer, both of which are important in transition-metal compounds, and can provide useful information to interpret experimental results obtained in various inner-shell electron X-ray spectroscopies.

To Detail

MLIP

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.

To Detail

Mm2cML

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Mm2cML is a web application that structure files can be generated from molecular model images. By carrying out three-dimensional reconstruction using OpenMVG and OpenMVS from molecular model images photographed by smartphones or digital cameras, and arranging atoms on the basis of them, users can obtain structure files (CML format) usable for molecular simulation. The simulation can be carried out on the basis of the structure examined using the molecular model in the real world.

To Detail

MMSP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of C++ interfaces for simulation of mesoscale properties based on grid data. By using provided header files, one can easily construct programs for simulation of various phenomena such as solidification, crystal growth, and spinodal decomposition, based on a Monte Carlo method, cellar automaton, and a phase-field method. This interface supports parallel computing by MPI, and also provides converters of output files for visualization software such as ParaView.

To Detail