An official Gaussian-series payware for molecular visualization. Must be used with Gaussian, the well-known software of quantum chemistry calculation. This application provides many functions such as molecular modeling, parameter setting, job management and visualization of calculation results. It also performs input file generation for Gaussian, and supports read/write of files with other formats such as Sybyl, Molden, PDB and CIF.
An open-source application for molecular dynamics simulation of biomolecules. This application is optimized for massive parallel computing environments such as the K-computer, and can perform high-speed molecular dynamical simulation of proteins and biomolecules. This application supports both all atoms calculation and coarse-grained model calculation, and can treat extended ensemble such as a replica exchange method. This code is released under GPL license.
An application for analysis of extended X-ray absorption fine structure (EXAFS) based on the multiple scattering theory. This application implements relativistic self-consistent calculation using the muffin-tin approximation to evaluate atomic phase shift including effect of neighboring atoms. Spectra with any number of edges can be treated simultaneously. Complex background multi-electron excitation can also be evaluated.
An open-source application for first-principles calculation based on the PAW method. By utilizing real-space or atom-localized basis sets, this application performs electronic structure calculation based on the density functional theory as well as the GW approximation. Simulations are set up using the interface provided by Atomic Simulation Environment (ASE). The code is written in C and python, and is available under GPL.
Open-source package for molecular dynamics simulation designed for biological macromolecules. This package can perform molecular dynamics simulation of biological macromolecules such as proteins, lipids, and nuclear acids as well as solutions by controlling temperature and pressure. This package can treat long-range interaction and free energy, and is designed for parallel computing.
An application for the single-crystal analysis and the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines crystal structure models of materials from X-ray and neutron diffraction data on single-crystal and powder samples. It has been developed based on Python. Graphical user interface (GUI) can be used.
A tool to extract numerical data from graphs in pictures. Operations of GSYS is based on the GUI and it is easy to generate the numerical data from the given graph.
An application program for lattice dynamics calculation of molecules, surfaces, and solids in various boundary conditions. It lays emphasis on analytic calculation of lattice dynamics while it can perform molecular dynamics simulation as well. It supports various force fields to treat ionic materials, organic materials, and metals. It also implements analytic derivatives of the second and third order for many force fields.
H-wave is a Python package for performing unrestricted Hartree-Fock (UHF) calculations and random phase approximation (RPA) calculations for itinerant electron systems. H-wave supports UHF calculations both in real- and wavenumber-spaces. H-wave supports one-body and two-body interactions in the Wannier90 format as inputs for H-wave, and thus users can solve ab initio effective Hamiltonians derived from Wannier90/RESPACK calculations based on UHF and RPA methods.
An open-source multi-purpose application for modeling and visualizing molecules (biomolecules, in particular). This application has been developed for multi-scale molecular simulation, and also provides a simple GUI for AMBER and Gaussian. It also implements exchange of protein residues and the Pathways model for the electron transfer in proteins. It calls rasmol for visualization of atoms and molecules.