TeNeS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A solver program for two dimensional quantum lattice model based on a projected entangled pair state wavefunction and the corner transfer matrix renormalization group method.
This works on a massively parallel machine because tensor operations are OpenMP/MPI parallelized.

To Detail

CCCM

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

CCCM is a high-order CCM (coupled cluster method) code for lattice spin systems. It is possible to obtain the ground state and its energy of quantum spin systems in two or three dimensions.

To Detail

feram

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A fast molecular dynamics simulator for ferroelectrics. This simulator can execute molecular dynamics calculations quickly by dealing with dipole interaction efficiently. It can simulate the physical property of microscopic ferroelectric thin film of tens of nanometers, which is important in FeRAM(Ferroelectric Random Access Memory), controlling the shapes and effects of inactivated layers.

To Detail

CPMD

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.

To Detail

ecalj

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source program package for first-principles calculation based on a mixed augmented plane wave method (the PMT method). For various physical systems, this package performs electronic structure calculation and structure optimization by LDA, GGA, LDA+U and so on. It further can treat quasi-particle excitation with high accuracy by the quasi-particle self-consistent GW method. It implements several original methods not included in other program packages, and is maintained by the version control system, Git.

To Detail

Parsec

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Parsec is a DFT program package based on real space basis and norm-conserving pseudopotential.

To Detail

ALPSCore/CT-HYB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source impurity solver based on the quantum Monte Carlo method. Thermal equilibrium states of interacting impurity systems, such as the impurity Anderson model, can be evaluated by the continuous-time hybridization-expansion quantum Monte Carlo method. It can be used as a solver of effective impurity models derived from the dynamical mean-field theory (DMFT) and can deal with multi-orbital models. This package supports parallel computation by MPI and is developed based on the ALPSCore library.

To Detail

QDS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QDS (Quantum Dynamics Simulator) is a program for computing magnetization curves and spectra of electron-spin resonance (ESR) in molecular magnets. Input data of this program can be magnetic interactions, the shape of a molecule, etc. Calculation is carried out with the combination of exact diagonalization, the quantum master equation, and the Kubo formula. It can be chosen whether the dissipation exists or not in the calculations of dynamical magnetization curves.

To Detail

RSPt

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for the first-principles calculation based on the all-electron method with localized bases. By adopting the full-potential LMTO method, high-speed electronic state calculation can be performed with a less number of bases compared with the standard all-electron method. There is no restriction on symmetries as in the LMTO-ASA method, and spin polarization and spin-orbit interaction can also be treated.

To Detail

QMAS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.

To Detail