Questaal

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.

To Detail

DeePMD-kit

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.

To Detail

CONQUEST

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

CONQUEST is a linear-scaling DFT (Density Functional Theory) code based on the density matrix minimization method. Since its computational cost, for both memory and computational costs, is only proportional to the number of atoms N of the target systems, the code can employ structure optimization or molecular dynamics on very large-scale systems, including more than hundreds of thousands of atoms. It also has high parallel efficiency and is suitable for massively parallel calculations.

To Detail

CP2K

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.

To Detail

GAMESS-US

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, many-body perturbation, configuration interaction theories, and so on. Even though this application is freeware, it succeeds in maintaining high-quality and high-performance codes by active development, and has a number of world-wide users. It histrically shares core programs with GAMESS-UK.

To Detail

OCTA

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

OCTA is an integrated simulation system for soft materials developed by the joint project of industry and academia funded by Ministry of Economy, Trade and Industry(METI), Japan. OCTA consists of four simulation engines named COGNAC(Molecular dynamics simulation), PASTA(rheology simulation), SUSHI(mean field theory), MUFFIN(continuum theory) and a simulation platform (GOURMET).

To Detail

Molden

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for pre- and post-processing for quantum chemistry calculation. This application can handle outputs from Gaussian, GAMESS, and MOPAC as well as the result of other applications via the Molden format. It supports many graphical interfaces such as Postscript, XWindows, VRML, and OpenGL, and performs visualization of molecular orbitals and electron density. It also produces animation videos of molecular vibration.

To Detail

Inelastica

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A pre/post-processing application for SIESTA and TranSIESTA. This application can calculate phonon frequencies, electron-phonon coupling, and contributions of inelastic scattering to the conductance. It also provides a Python interface for accessing data in the Hamiltonian output from SIESTA.

To Detail

MolDS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for semi-empirical quantum chemistry calculation. Special emphasis is placed on molecular dynamics simulations, and is able to run efficiently on large-scale cluster computer systems using OpenMP/MPI hybrid parallelism. The code is still under development, but the source code is distributed freely under the GPL license.

To Detail

DC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An electronic state solver distributed with GAMESS, the quantum chemical (QM) calculation software. Combining energy density analysis and Divide-and-Conquer (DC) method, accurate QM calculation with electronic correlation is solved in a short time. Highly accurate QM calculations for many-atom/nano-scale material can be solved when run on a high performance super computer.

To Detail