DC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An electronic state solver distributed with GAMESS, the quantum chemical (QM) calculation software. Combining energy density analysis and Divide-and-Conquer (DC) method, accurate QM calculation with electronic correlation is solved in a short time. Highly accurate QM calculations for many-atom/nano-scale material can be solved when run on a high performance super computer.

To Detail

RAQET

  • Level of openness 2 ★★☆
  • Document quality 1 ★☆☆

A program package for electronic state calculations based on two-component relativistic quantum chemical theories. Several schemes and algorithms, which are specialized in calculations of molecules containing heavy elements, have been implemented. Single-point energies for ground and excited states, geometry optimizations, and molecular properties are available. Furthermore, the package can perform accurate calculations for molecules including many heavy atoms such as metal clusters with practical computational cost.

To Detail

Firefly

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, the many-body perturbation, configuration interaction theories, and so on. While this application is a derivative of GAMESS-US for specific use of Intel compatible CPU, it does not include recently developed calculation methods such as the CC and FMO methods.

To Detail

fu-suite

  • Level of openness 2 ★★☆
  • Document quality 1 ★☆☆

A GUI program for structure modeling of giant molecules. This application consists of two programs, “fumodel” and “fuplot”. The former supports preparation of input data for FMO in GAMESS, whereas the latter is software for making graphs from numerical results obtained by FMO.

To Detail

ABINIT-MP

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆
An application for quantum chemical calculation based on the fragment molecular orbital (FMO) method. This application can perform fast quantum chemical calculation of large molecules such as biopolymers, and includes graphical user interface (GUI) to help input-data preparation and analysis of simulation results. It also supports parallel computing from small clusters to massive parallel computers such as the Supercomputer Fugaku.
To Detail

DCDFTBMD

  • Level of openness 2 ★★☆
  • Document quality 0 ☆☆☆

An application for DFTB (Density Functional Tight Binding) calculation combined with Divide-and-Conquer (DC) method. The DC-DFTB-K program enables geometry optimization and molecular dynamics simulation of large molecular systems with linear-scaling computational cost. DFTB electronic structure calculation of 1 million atom system has been demonstrated using MPI/OpenMP hybrid parallel computation on the K computer.

To Detail

RuNNer

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.

To Detail

MLIP

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.

To Detail

NTChem

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An application for molecular science simulation. This application covers not only traditional simulation methods implemented in existing applications but also a number of novel methods for quantum chemical calculation. It can perform ab-initio electronic state calculation for a few thousands atoms/molecules as well as trace calculation of transition states in chemical reaction for a few hundreds atoms/molecules. It can also perform high-efficient massively parallel computing on large-scale parallel computers such as the K-computer.

To Detail

Mm2cML

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Mm2cML is a web application that structure files can be generated from molecular model images. By carrying out three-dimensional reconstruction using OpenMVG and OpenMVS from molecular model images photographed by smartphones or digital cameras, and arranging atoms on the basis of them, users can obtain structure files (CML format) usable for molecular simulation. The simulation can be carried out on the basis of the structure examined using the molecular model in the real world.

To Detail