Open Chemistry database that has been in operation since 2004 under the National Institutes of Health (NIH) in the United States. It mainly targets data for small molecules, but information on large molecules such as lipids and peptides are also collected. The database can be accessed via web browser or PUG REST API. The data can be also downloaded from an FTP site.
Python tool for automatic extraction of chemical substance information from literature. Based on natural language processing algorithms, it can extract substance names and related physical/chemical properties such as melting points and spectra from documents written in English.
A highly efficient framework for crystal structure exploration and property prediction dedicated to material science calculations. This application can automate the setup, execution, and analysis of the results of calculations based primarily on the density functional theory. It provides data on more than millions of crystal structures and can be used for high throughput calculations for material exploration. It also interfaces with various DFT codes (VASP, Quantum ESPRESSO, etc.).
A tool for performing Bader analysis of assigning electron density of molecules and solids to individual atoms. Binaries for Linux and Mac OS X, as well as source code is provided under the GPL. The code is written in fortran90, and can handle charge density data in VASP CHGCAR and Gaussian Cube formats.
A group of applications that perform molecular dynamics, hybrid quantum/classical mechanical simulation, search of chemical reaction path by the nudged elastic band method, and potential parameter fitting. The molecular dynamics code includes interatomic potentials for several metals and semiconductors, and is capable of parallel computation based of spatial decomposition.
An application for structure prediction based on the evolutionary algorithm. From an input of the atomic position in a unit cell and possible elements at each atomic position, this application predicts the stable structure and composition from the first-principles calculation and molecular dynamics in combination with the evolutionary algorithm. This application is written in Python, and uses Quantum ESPRESSO and GULP as an external program.
An open-source application for the first-principles calculation by the all-electron calculation method based on plane wave bases. This application can perform electronic state calculation by the density functional theory (DFT). This appication also supports the LDA+U method, treatment of spin-orbit interaction and noncolinear magnetism, the GW approtimation, and downfolding by the constraint RPA method.
An open-source application for the first-principles calculation by the all-electron calculation method based on plane wave bases. In addition to standard methods (LDA, GGA, etc.), the LDA+U method, treatment of spin-orbit interaction (noncolinear magnetism), and calculation of phonons are supported. Hybrid parallel computing by OpenMP and MPI is also supported.
An open-source application for first-principles calculation based on all-electron calculations. In addition to ground-state energy and forces on atoms obtained by density functional theory, it focuses on investigation of excited state properties using time-dependent density functional theory as well as many-body perturbation theory. It is parallelized using MPI and is also optimized for multithreaded math libraries such as BLAS and LAPACK.
An open-source application for quantum chemical calculation based on the density-matrix renormalization group (DMRG). For systems with a number of atomic orbitals, low-lying energy eigenvalues can be calculated in high accuracy of order of 1kcal/mol. This application is suitable especially to calculation of multi-orbital systems with one-dimensional topology such as chain-like or circular-like configuration of orbits.