ABINIT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source package for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs various electronic-state calculation by density functional theory such as band calculation of solids, and structure optimization of surfaces/interfaces. Detailed tutorials and documents are well prepared in this package, and many physical quantities including chemical reaction and lattice vibration can be obtained easily.

To Detail

ADF

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Payware for quantum chemical calculation based on the density functional theory. This application supports relativistic effects needed in treatment of transition-metal complexes and heavy elements, and can also treat effect of solvents with the method of COSMO and 3D-RISM. In addition to ordinal optical spectra, it can evaluate various spectra data such as NMR, atomic vibration, electron spin resonance, and nuclear quadrupole resonance (NQR).

To Detail

AFLOWLIB

    A results database of first-principle calculation for material science. This database provides numerical data of crystal structures, band structures, thermodynamic quantities, phase diagrams, magnetic moments, and so on. This site is maintained by a research group of Duke University, and in particular, has extensive data of Heusler alloys. In addition to a user interface based on web browsers, an http-based API is also provided to enable user-defined material screening. This database can be used without charge after registration.

    To Detail

    AkaiKKR

    • Level of openness 3 ★★★
    • Document quality 2 ★★☆

    AkaiKKR is a first-principles all-electron code package that calculates the electronic structure of condensed matters using the Green’s function method (KKR). It is based on the density functional theory and is applicable to a wide range of physical systems. It can be used to simulate not only periodic crystalline solids, but also used to calculate electronic structures of impurity systems and, by using the coherent potential approximation (CPA), random systems such as disordered alloys, mixed crystals, and spin-disordered systems.

    To Detail

    ALPS

    • Level of openness 3 ★★★
    • Document quality 3 ★★★

    ALPS is a numerical simulation library for strongly correlated systems such as magnetic materials or correlated electrons. It contains typicalsolvers for strongly correlated systems: Monte Carlo methods, exact diagonalization, the density matrix renormalization group, etc. It can be used to calculate heat capacities, susceptibilities, magnetization processes in interacting spin systems, the density of states in strongly correlated electrons, etc. A highly efficient scheduler for parallel computing is another improvement.

    To Detail

    AMULET

    • Level of openness 3 ★★★
    • Document quality 2 ★★☆

    AMULET is a collection of tools for a first principles calculation of physical properties of strongly correlated materials. It is based on density functional theory (DFT) combined with dynamical mean-field theory (DMFT). Users can calculate physical properties of chemically disordered compounds and alloys within CPA+DMFT formalism.

    To Detail

    ArgusLab

    • Level of openness 0 ☆☆☆
    • Document quality 0 ☆☆☆

    An application for modeling and visualization of molecules for quantum chemical calculation. This application implements a construction of
    molecular structures with classical molecular dynamics simulation and structure optimization by simple generic force fields, and a preparation of input files for applications of quantum chemical calculation such as Gaussian. A binary package for Windows XP is available, and informal packages for Windows 7, iPad, and Linux exist.

    To Detail

    Atomistix Toolkit (ATK)

    • Level of openness 0 ☆☆☆
    • Document quality 2 ★★☆

    Payware for evaluation of electron transport based on nonequilibrium Green’s function. This application is descended from the SIESTA application, and can calculate electronic transport properties of bulk materials and molecules inserted between leads by performing electronic state calculation under a finite bias. One can choose either density functional method or semiempirical method, and can control external factors such as gate voltages. It also implements structure optimization and analysis of chemical reaction paths.

    To Detail

    BerkeleyGW

    • Level of openness 3 ★★★
    • Document quality 3 ★★★

    BerkeleyGW is an open-source program package to calculate quasi-particle spectrum and optical responses from mean-field result by using GW approximation and Bethe-Salpeter equation. This is compatible with output files of many commonly used DFT codes such as Quantum ESPRESSO.

    To Detail

    BigDFT

    • Level of openness 3 ★★★
    • Document quality 3 ★★★

    An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.

    To Detail