STATE

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

STATE is a first-principles plane-wave pseudo-potential code. It provides electronic state calculations and molecular dynamics simulations. This code is suitable for simulating chemical reactions at solid surfaces and solid–liquid interfaces, i.e., It is able to investigate reaction paths and activation barriers of chemical processes at interfaces. It can also include Van der Waals corrections to conventional density functional theory.

To Detail

TOMBO

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A first principles calculation program using all electron mixture based approach. It targets broad physical systems such as isolated systems, surfaces and interfaces, and crystals, and it calculates all electronic states from core electrons to valence electrons. It deals with calculation methods such as the GW method, and also deals with parallel calculations. It can execute with high accuracy molecular dynamics calculations for electronic excited states based on time dependent density functional theory.

To Detail

TRIQS/CTHYB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source solver for the impurity problem based on the continuous-time quantum Monte Carlo method. Imaginary-time Green’s functions of the impurity Anderson model and the effective impurity model in the dynamical mean-field approximation can be calculated with high speed by using an efficient Monte Carlo algorithm. The main programs are written by C++, and can be called from Python scripts.

To Detail

TURBOMOLE

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for the ab-initio quantum chemical calculation. This application preforms high-speed electronic structure calculation by introducing the RI approximation, and evaluates not only ground states but also excited states by various methods such as full RPA, TDDFT, CIS(D), CC2, ADC(2). It can also be used for evaluation of spectra data of infrared(IR), visible(Vis)/ultraviolet(UV), Raman, and circular dichroism spectroscopy.

To Detail

VASP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★
Program package for first-principles calculation based on PAW-type pseudo-potential. This package performs electronic-state calculation of various physical systems by density functional theory with high speed, and can be used for structure optimization, evaluation of response functions, and chemical reaction. There are many users in the world, and detailed information, manuals, and tutorials are well prepared.
To Detail

Winmostar

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

Integrated applications for quantum chemical, molecular dynamics, and first-principles calculations. Users can perform all the operations necessary for simulation by mouse operation, from creating input files, to performing calculations, to analyzing and displaying results. It supports open source software such as GAMESS, NWChem, Gromacs, LAMMPS, Quantum ESPRESSO and OpenMX, as well as industry-standard software such as MOPAC and Gaussian.

To Detail

xTAPP

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

xTAPP is a first-principles plane-wave pseudo-potential code. It computes band structure and electronic states with high precision for a wide range of materials including metals, oxide surfaces, solid interfaces, and so forth. It has support tools and visualization of output and input, is available as a massively parallel computer using OpenMP, MPI, and GPGPU.

To Detail

Yambo

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Code for performing many-body calculations based on the GW method, BSE method, etc. starting from Kohn-Sham wave functions obtained using density functional theory. The code relies on wave function output from either abinit or Quantum Espresso. A python interface, Yambo-py, is also under development.

To Detail